File size: 11,323 Bytes
8872504 45fe4f8 8872504 981ef7e 8872504 981ef7e 8872504 981ef7e 8872504 981ef7e 8872504 981ef7e 8872504 981ef7e 8872504 981ef7e 8872504 981ef7e 8872504 981ef7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
---
language:
- en
- fr
- es
- de
- it
- pt
- nl
license: mit
library_name: transformers
tags:
- audio
- automatic-speech-recognition
- transformers.js
widget:
- example_title: LibriSpeech sample 1
src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
- example_title: LibriSpeech sample 2
src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
pipeline_tag: automatic-speech-recognition
---
# Whisper-Large-V3-Distil-Multi7-v0.2
A multilingual distilled Whisper model with 2 decoder layers, supporting 7 European languages: English, French, Spanish, German, Italian, Portuguese, and Dutch.
The model was trained during my work on [Distil-Large-v3.5](https://huggingface.co/distil-whisper/distil-large-v3.5).
A notable feature is its native support for **code-switching**. The model has the ability to switch languages within a single segment transcription by automatically producing a new language token when it detects a language change (as demonstrated in the following example).
*The `<|yue|>` language token has been repurposed during training to act as an automatic language detection token that enables code-switching during inference. To use this feature, simply set the language parameter to `cantonese` (used by default).*
The model's performance is below both the monolingual distilled version and Whisper-Large-v3-Turbo. Future work should investigate better training procedures and possibly incorporate more data to effectively compress multilingual capabilities into a single model.
## Table of Contents
- [Usage](#usage)
- [Evaluation](#evaluation)
## Usage
```python
import torch
from datasets import load_dataset
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
# Load model
model_name_or_path = "bofenghuang/whisper-large-v3-distil-multi7-v0.2"
processor = AutoProcessor.from_pretrained(model_name_or_path)
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_name_or_path, torch_dtype=torch_dtype)
model.to(device)
# Example audio
dataset = load_dataset("bofenghuang/asr-dummy", "cs", split="test")
sample, text = dataset[0]["audio"], dataset[0]["text"]
# Ground truth text
print(text)
# Aber sei ihnen nicht böse, Habibi, vergib ihnen, sie vergaßen die Liebe, sie vergaßen die Bibel,
# wünsch ihnen den Frieden. Nous allons construire des radiotélescopes géants comme celui-ci,
# qui est mon préféré. Questa è un'immagine di Cairo Open City, una mostra che il museo Folkwang di
# Essen ha dedicato al ruolo della mobile photography nella primavera Araba.
# Extract feautres
input_features = processor(
sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt"
).input_features
# Generate tokens
predicted_ids = model.generate(
input_features.to(device, dtype=torch_dtype),
max_new_tokens=128,
)
# Detokenize to text
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
print(transcription)
# Aber sei ihnen nicht böse, Habibi, vergib ihn. Sie vergaßen die Liebe, sie vergaßen die Liebe.
# Wünsche ihnen dem Frieden. Nous allons construire des radiotelescopes géants, comme celui-ci qui
# est mon préféré. Esta es una imagen de Cairo Open City, una muestra que el Museo Folk Punk de Essen
# ha dedicado al ruolo de la mobile fotografía en la primavera árabe.
# Dive in generated tokens
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False)[0]
print(transcription)
# <|de|> Aber sei ihnen nicht böse, Habibi, vergib ihn. Sie vergaßen die Liebe, sie vergaßen die Liebe.
# Wünsche ihnen dem Frieden.<|fr|> Nous allons construire des radiotelescopes géants, comme celui-ci qui
# est mon préféré.<|es|> Esta es una imagen de Cairo Open City, una muestra que el Museo Folk Punk de Essen
# ha dedicado al ruolo de la mobile fotografía en la primavera árabe.
```
## Evaluation
### English
| Model | LIUM_tedlium | mcv17 | voxpopuli | fleurs | kensho_spgispeech | librispeech-test_clean | librispeech-test_other | speechcolab_gigaspeech |
| ------------------------------------------ | ------------ | ----- | --------- | ------ | ----------------- | ---------------------- | ---------------------- | ---------------------- |
| openai/whisper-large-v3 | 10.58 | 10.13 | 8.93 | 5.72 | 2.95 | 1.87 | 3.58 | 10.07 |
| openai/whisper-large-v3-turbo | 10.20 | 11.74 | 11.78 | 6.13 | 2.95 | 1.98 | 3.94 | 10.11 |
| distil-whisper/distil-large-v3 | 8.93 | 12.41 | 7.72 | 7.59 | 3.25 | 2.42 | 5.11 | 10.08 |
| distil-whisper/distil-large-v3.5 | 8.65 | 11.07 | 7.54 | 6.74 | 2.86 | 2.28 | 4.94 | 9.84 |
| bofenghuang/whisper-large-v3-distil-multi4-v0.2 | 8.88 | 11.33 | 7.60 | 6.97 | 3.03 | 2.51 | 5.24 | 10.12 |
| bofenghuang/whisper-large-v3-distil-multi7-v0.2 | 9.36 | 11.32 | 7.65 | 7.02 | 2.99 | 2.46 | 5.24 | 10.06 |
### French
| Model | mcv17 | mls | voxpopuli | mtedx | af_accented | fleurs | hf_dev_data_chunk30 | hf_dev_data_sequential | mtedx_chunk30 | mtedx_sequential |
| ------------------------------------------- | ----- | ---- | --------- | ----- | ----------- | ------ | ------------------- | ---------------------- | ------------- | ---------------- |
| openai/whisper-large-v3 | 10.98 | 4.69 | 11.15 | 8.67 | 7.51 | 5.4 | 9.87 | 8.97 | 9 | 8.01 |
| openai/whisper-large-v3-turbo | 12.41 | 5.1 | 12.21 | 9.87 | 8.37 | 5.48 | 10.12 | 9 | 8.49 | 8.39 |
| bofenghuang/whisper_large_v3_distil_fr_v0.2 | 11.1 | 5 | 10.68 | 8.75 | 7.09 | 6.35 | 9.44 | 9.84 | 8.94 | 8.93 |
| bofenghuang/whisper-large-v3-distil-multi4-v0.2 | 11.96 | 6.04 | 11.07 | 9.16 | 7.99 | 7.10 | 10.42 | 12.61 | 9.06 | 11.75 |
| bofenghuang/whisper-large-v3-distil-multi7-v0.2 | 12.19 | 6.2 | 11.29 | 9.13 | 8.26 | 7.17 | 10.04 | 12.26 | 8.93 | 11.56 |
### Spanish
| Model | mcv17 | mls | voxpopuli | mtedx | fleurs | hf_dev_data_chunk30 | hf_dev_data_sequential | mtedx_chunk30 | mtedx_sequential |
| ------------------------------------------ | ----- | ---- | --------- | ----- | ------ | ------------------- | ---------------------- | ------------- | ---------------- |
| openai/whisper-large-v3 | 4.91 | 3.97 | 11.06 | 6.52 | 4.22 | 10.85 | 10.36 | 5.90 | 5.22 |
| openai/whisper-large-v3-turbo | 5.74 | 4.41 | 16.02 | 6.66 | 4.59 | 11.55 | 10.68 | 6.46 | 5.41 |
| bofenghuang/whisper-large-v3-distil-multi4-v0.2 | 5.58 | 4.34 | 8.52 | 7.43 | 5.20 | 11.26 | 13.43 | 5.69 | 8.95 |
| bofenghuang/whisper-large-v3-distil-multi7-v0.2 | 5.70 | 4.35 | 8.55 | 7.56 | 5.15 | 11.45 | 13.54 | 5.84 | 8.27 |
### German
| Model | mcv17 | mls | voxpopuli | mtedx | fleurs | hf_dev_data_chunk30 | hf_dev_data_sequential | mtedx_chunk30 | mtedx_sequential |
| ------------------------------------------ | ----- | ---- | --------- | ----- | ------ | ------------------- | ---------------------- | ------------- | ---------------- |
| openai/whisper-large-v3 | 6.11 | 5.60 | 17.75 | 19.63 | 5.92 | 11.21 | 10.35 | 17.64 | 17.76 |
| openai/whisper-large-v3-turbo | 7.45 | 6.43 | 20.48 | 20.00 | 6.45 | 10.57 | 9.70 | 18.04 | 18.37 |
| bofenghuang/whisper-large-v3-distil-multi4-v0.2 | 7.31 | 6.45 | 12.41 | 21.48 | 8.20 | 11.04 | 13.55 | 19.54 | 21.76 |
| bofenghuang/whisper-large-v3-distil-multi7-v0.2 | 7.57 | 6.67 | 12.42 | 21.95 | 8.28 | 11.21 | 13.84 | 19.90 | 21.67 |
### Italian
| Model | mcv17 | mls | voxpopuli | mtedx | fleurs | hf_dev_data_chunk30 | hf_dev_data_sequential | mtedx_chunk30 | mtedx_sequential |
| ------------------------------------------- | ----- | ----- | --------- | ----- | ------ | ------------------- | ---------------------- | ------------- | ---------------- |
| openai/whisper-large-v3 | 5.71 | 9.58 | 28.45 | 7.21 | 4.28 | 6.95 | 6.37 | 6.83 | 7.28 |
| openai/whisper-large-v3-turbo | 6.77 | 10.64 | 30.69 | 7.41 | 4.69 | 6.88 | 6.52 | 7.98 | 7.37 |
| bofenghuang/whisper_large_v3_distil_it_v0.2 | 6.15 | 9.22 | 17.27 | 7.52 | 5.26 | 6.06 | 6.99 | 7.84 | 8.42 |
| bofenghuang/whisper-large-v3-distil-multi7-v0.2 | 6.78 | 11.42 | 17.53 | 8.07 | 5.68 | 7.04 | 9.51 | 7.51 | 10.47 |
### Portuguese
| Model | mcv17 | mls | mtedx | fleurs | hf_dev_data_chunk30 | hf_dev_data_sequential | mtedx_chunk30 | mtedx_sequential |
| ------------------------------------------ | ----- | ---- | ----- | ------ | ------------------- | ---------------------- | ------------- | ---------------- |
| openai/whisper-large-v3 | 6.76 | 7.04 | 8.91 | 5.86 | 12.11 | 12.39 | 8.70 | 8.98 |
| openai/whisper-large-v3-turbo | 7.66 | 6.64 | 8.84 | 6.11 | 12.42 | 11.62 | 10.97 | 9.04 |
| bofenghuang/whisper-large-v3-distil-multi7-v0.2 | 8.31 | 6.75 | 10.11 | 7.10 | 12.74 | 14.97 | 9.64 | 11.78 |
### Dutch
| Model | mcv17 | mls | voxpopuli | fleurs |
| ------------------------------------------ | ----- | ----- | --------- | ------ |
| openai/whisper-large-v3 | 4.51 | 66.95 | 23.35 | 6.99 |
| openai/whisper-large-v3-turbo | 6.16 | 52.37 | 27.42 | 7.59 |
| bofenghuang/whisper-large-v3-distil-multi7-v0.2 | 6.76 | 14.82 | 14.92 | 10.86 |
|