Update README.md
Browse files
README.md
CHANGED
@@ -25,6 +25,47 @@ Alongside these models, FinBERT, different versions of RoBERTa, and EconBERT wer
|
|
25 |
## How to use
|
26 |
|
27 |
```python
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
```
|
29 |
---
|
30 |
# Citation
|
|
|
25 |
## How to use
|
26 |
|
27 |
```python
|
28 |
+
import pandas as pd
|
29 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
30 |
+
|
31 |
+
# Load model and tokenizer
|
32 |
+
model_name = "brjoey/CBSI-bert-base-uncased"
|
33 |
+
classifier = pipeline(
|
34 |
+
"text-classification",
|
35 |
+
model=model_name,
|
36 |
+
tokenizer=model_name
|
37 |
+
)
|
38 |
+
|
39 |
+
# Define label mapping
|
40 |
+
cbsi_label_map = {
|
41 |
+
0: "neutral",
|
42 |
+
1: "dovish",
|
43 |
+
2: "hawkish"
|
44 |
+
}
|
45 |
+
|
46 |
+
# Classify a column in a Pandas DataFrame - replace with your DataFrame
|
47 |
+
texts = [
|
48 |
+
"The Governing Council decided to lower interest rates.",
|
49 |
+
"The central bank will maintain its current policy stance."
|
50 |
+
]
|
51 |
+
|
52 |
+
df = pd.DataFrame({
|
53 |
+
"text": texts
|
54 |
+
})
|
55 |
+
|
56 |
+
# Run classification
|
57 |
+
predictions = classifier(
|
58 |
+
df["text"].tolist()
|
59 |
+
)
|
60 |
+
|
61 |
+
# Store the results
|
62 |
+
df["label"], df["score"] = zip(*[
|
63 |
+
(cbsi_label_map[int(pred["label"].split("_")[-1])], pred["score"])
|
64 |
+
for pred in predictions
|
65 |
+
])
|
66 |
+
|
67 |
+
print("\n === Results ===\n")
|
68 |
+
print(df[["text", "label", "score"]])
|
69 |
```
|
70 |
---
|
71 |
# Citation
|