File size: 2,874 Bytes
e700b18 3c1de0b e700b18 0755535 e700b18 dd4e888 e700b18 3f515fe 0755535 e700b18 2a347ed e700b18 2a347ed e700b18 a448fb1 e700b18 2a347ed e700b18 2a347ed e700b18 2a347ed e700b18 8f3129a 2a347ed 3f515fe e700b18 3f515fe e700b18 2a347ed e700b18 2a347ed e700b18 3f515fe 0755535 3f515fe 2a347ed e700b18 2a347ed e700b18 2a347ed e700b18 2a347ed de6dd4e 2a347ed 3f515fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: apache-2.0
datasets:
- oscar-corpus/OSCAR-2109
language:
- nl
- en
pipeline_tag: text-generation
library_name: transformers
---
# B-GPT_nl_en_simultaneous
This is a bilingual GPT-2 style model. For the first half of training, this model was trained only on Dutch data. In the second half of training, the model was trained on a 50%-50% mix of Dutch and English data. At the end of training, 75% of training data seen by the model is Dutch and 25% is English. The tokenizer was trained on the same overall proportions of data as the language model at the final step.
This model was released alongside the paper [On the Acquisition of Shared Grammatical Representations in Bilingual Language Models](https://arxiv.org/abs/2503.03962), which contains more details about the models. Additionally, the [OSF page](https://osf.io/5cw2e/) provides all code and data related to the project.
## Model details:
All models are trained with a [CLS] (same as [BOS]) token prepended, and a [SEP] (same as [EOS]) token separating sequences.
For best results, make sure that [CLS] is prepended to your input sequence (see sample usage linked above)!
Details for this model specifically:
* Architecture: gpt2
* Parameters: 124770816
* Maximum sequence length: 512 tokens
* Training tokens: 12B
* Vocabulary size: 50000
* Compute cost: ~9 NVIDIA A6000 GPU hours
* CO2 Emission: 1.17 kg
Training dataset: [OSCAR 2021/09](https://huggingface.co/datasets/oscar-corpus/OSCAR-2109)
Checkpoints are taken at training steps: 0, 10000, 20000, 30000, 40000, 50000, 64000, 64010, 64020, 64030, 64040, 64050, 64060, 64070, 64080, 64090, 64100, 64110, 64120, 64130, 64140, 64150, 64160, 64170, 64180, 64190, 64200, 64300, 64400, 64500, 64600, 64700, 64800, 64900, 65000, 66000, 67000, 68000, 69000, 70000, 80000, 90000, 100000, 110000, 120000, 128000.
## Use This Model
Load the model:
Note: if you do not specify a revision, it will load the final checkpoint of the model. See above for the list of checkpoints. The checkpoint step is the name of the revision.
```
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("catherinearnett/B-GPT_en_nl_sequential")
model = AutoModelForCausalLM.from_pretrained("catherinearnett/B-GPT_en_nl_sequential", revision = "128000")
```
Text Generation:
```
from transformers import pipeline
pipe = pipeline("text-generation", model="catherinearnett/B-GPT_en_nl_sequential")
print(pipe("I am a", max_length=20)[0]["generated_text"])
```
## Citation
If you use this model, please cite:
```
@article{arnett2025acquisition,
title={On the Acquisition of Shared Grammatical Representations in Bilingual Language Models},
author={Arnett, Catherine and Chang, Tyler A and Michaelov, James A and Bergen, Benjamin K},
journal={arXiv preprint arXiv:2503.03962},
year={2025}
}
```
|