Upload 6 files
Browse files- Model/codaBlock.py +14 -0
- Model/latent_Recurrent.py +22 -0
- Model/model.py +75 -0
- Model/multi_head_Attention.py +44 -0
- Model/prelude_Block.py +28 -0
- Model/recurrent_Block.py +25 -0
Model/codaBlock.py
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from typing import Optional, Tuple
|
| 5 |
+
|
| 6 |
+
# Final Projection Block
|
| 7 |
+
class CodaBlock(nn.Module):
|
| 8 |
+
def __init__(self, d_model: int, vocab_size: int):
|
| 9 |
+
super().__init__()
|
| 10 |
+
self.norm = nn.LayerNorm(d_model)
|
| 11 |
+
self.output_proj = nn.Linear(d_model, vocab_size)
|
| 12 |
+
|
| 13 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 14 |
+
return self.output_proj(self.norm(x))
|
Model/latent_Recurrent.py
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from typing import Optional, Tuple
|
| 5 |
+
from Model.prelude_Block import PreludeBlock
|
| 6 |
+
from Model.recurrent_Block import RecurrentBlock
|
| 7 |
+
from Model.codaBlock import CodaBlock
|
| 8 |
+
|
| 9 |
+
# Full Latent Recurrent Depth Model
|
| 10 |
+
class LatentRecurrentDepthLM(nn.Module):
|
| 11 |
+
def __init__(self, vocab_size: int, d_model: int, num_heads: int, dropout: float = 0.1):
|
| 12 |
+
super().__init__()
|
| 13 |
+
self.prelude = PreludeBlock(vocab_size, d_model, num_heads, dropout)
|
| 14 |
+
self.recurrent = RecurrentBlock(d_model, num_heads, dropout)
|
| 15 |
+
self.coda = CodaBlock(d_model, vocab_size)
|
| 16 |
+
|
| 17 |
+
def forward(self, x: torch.Tensor, num_iterations: int, mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
| 18 |
+
hidden = self.prelude(x, mask)
|
| 19 |
+
recurrent_state = torch.zeros_like(hidden)
|
| 20 |
+
for _ in range(num_iterations):
|
| 21 |
+
hidden, recurrent_state = self.recurrent(hidden, recurrent_state, mask)
|
| 22 |
+
return self.coda(hidden)
|
Model/model.py
ADDED
|
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from typing import Optional, Tuple
|
| 5 |
+
import math
|
| 6 |
+
from transformers import PretrainedConfig, PreTrainedModel
|
| 7 |
+
from Model.latent_Recurrent import LatentRecurrentDepthLM
|
| 8 |
+
|
| 9 |
+
# Configuration for the Latent Recurrent Depth Model
|
| 10 |
+
class LatentRecurrentDepthConfig(PretrainedConfig):
|
| 11 |
+
model_type = "latent_recurrent_depth"
|
| 12 |
+
|
| 13 |
+
def __init__(self, vocab_size=50257, d_model=768, num_heads=12, dropout=0.1, **kwargs):
|
| 14 |
+
super().__init__(**kwargs)
|
| 15 |
+
self.vocab_size = vocab_size
|
| 16 |
+
self.d_model = d_model
|
| 17 |
+
self.num_heads = num_heads
|
| 18 |
+
self.dropout = dropout
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
# Hugging Face-Compatible Model Wrapper
|
| 22 |
+
class LatentRecurrentDepthModel(PreTrainedModel):
|
| 23 |
+
config_class = LatentRecurrentDepthConfig
|
| 24 |
+
base_model_prefix = "latent_recurrent_depth"
|
| 25 |
+
|
| 26 |
+
def __init__(self, config: LatentRecurrentDepthConfig):
|
| 27 |
+
super().__init__(config)
|
| 28 |
+
self.latent_model = LatentRecurrentDepthLM(config.vocab_size, config.d_model, config.num_heads, config.dropout)
|
| 29 |
+
self.init_weights()
|
| 30 |
+
|
| 31 |
+
def forward(self, input_ids: torch.Tensor, num_iterations: int, mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
| 32 |
+
return self.latent_model(input_ids, num_iterations, mask)
|
| 33 |
+
|
| 34 |
+
def generate(
|
| 35 |
+
self,
|
| 36 |
+
input_ids: torch.Tensor,
|
| 37 |
+
max_length: int = 20,
|
| 38 |
+
num_iterations: int = 3,
|
| 39 |
+
temperature: float = 1.0,
|
| 40 |
+
top_k: Optional[int] = 50,
|
| 41 |
+
) -> torch.Tensor:
|
| 42 |
+
"""
|
| 43 |
+
Generate a sequence of tokens given input_ids.
|
| 44 |
+
|
| 45 |
+
Args:
|
| 46 |
+
input_ids: torch.Tensor of shape (batch, seq_length) containing the prompt.
|
| 47 |
+
max_length: The number of tokens to generate.
|
| 48 |
+
num_iterations: The number of recurrent iterations to use in each forward pass.
|
| 49 |
+
temperature: Temperature for scaling logits.
|
| 50 |
+
top_k: If set, only sample from the top k tokens.
|
| 51 |
+
|
| 52 |
+
Returns:
|
| 53 |
+
generated: torch.Tensor containing the generated sequence.
|
| 54 |
+
"""
|
| 55 |
+
generated = input_ids.clone()
|
| 56 |
+
self.eval()
|
| 57 |
+
with torch.no_grad():
|
| 58 |
+
for _ in range(max_length):
|
| 59 |
+
# Get logits from the model for the current sequence.
|
| 60 |
+
logits = self.forward(generated, num_iterations=num_iterations)
|
| 61 |
+
# Use only the logits for the last token in the sequence.
|
| 62 |
+
next_token_logits = logits[:, -1, :] / temperature
|
| 63 |
+
if top_k is not None:
|
| 64 |
+
# Top-k filtering
|
| 65 |
+
top_k_logits, top_k_indices = torch.topk(next_token_logits, top_k)
|
| 66 |
+
probabilities = F.softmax(top_k_logits, dim=-1)
|
| 67 |
+
next_token = top_k_indices.gather(-1, torch.multinomial(probabilities, num_samples=1))
|
| 68 |
+
else:
|
| 69 |
+
probabilities = F.softmax(next_token_logits, dim=-1)
|
| 70 |
+
next_token = torch.multinomial(probabilities, num_samples=1)
|
| 71 |
+
generated = torch.cat([generated, next_token], dim=1)
|
| 72 |
+
# Optionally, break if the EOS token is generated.
|
| 73 |
+
if next_token.item() == self.config.eos_token_id:
|
| 74 |
+
break
|
| 75 |
+
return generated
|
Model/multi_head_Attention.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from typing import Optional, Tuple
|
| 5 |
+
|
| 6 |
+
# Multi-Head Attention Mechanism
|
| 7 |
+
class MultiHeadAttention(nn.Module):
|
| 8 |
+
def __init__(self, d_model: int, num_heads: int, dropout: float = 0.1):
|
| 9 |
+
super().__init__()
|
| 10 |
+
assert d_model % num_heads == 0
|
| 11 |
+
|
| 12 |
+
self.d_model = d_model
|
| 13 |
+
self.num_heads = num_heads
|
| 14 |
+
self.head_dim = d_model // num_heads
|
| 15 |
+
|
| 16 |
+
self.q_proj = nn.Linear(d_model, d_model)
|
| 17 |
+
self.k_proj = nn.Linear(d_model, d_model)
|
| 18 |
+
self.v_proj = nn.Linear(d_model, d_model)
|
| 19 |
+
self.o_proj = nn.Linear(d_model, d_model)
|
| 20 |
+
|
| 21 |
+
self.dropout = nn.Dropout(dropout)
|
| 22 |
+
|
| 23 |
+
def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
| 24 |
+
batch_size, seq_len, d_model = x.shape
|
| 25 |
+
|
| 26 |
+
# Project and reshape for multi-head attention
|
| 27 |
+
q = self.q_proj(x).reshape(batch_size, seq_len, self.num_heads, self.head_dim)
|
| 28 |
+
k = self.k_proj(x).reshape(batch_size, seq_len, self.num_heads, self.head_dim)
|
| 29 |
+
v = self.v_proj(x).reshape(batch_size, seq_len, self.num_heads, self.head_dim)
|
| 30 |
+
|
| 31 |
+
# Transpose for attention computation
|
| 32 |
+
q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)
|
| 33 |
+
|
| 34 |
+
# Compute attention scores
|
| 35 |
+
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_dim)
|
| 36 |
+
if mask is not None:
|
| 37 |
+
scores = scores.masked_fill(mask == 0, float('-inf'))
|
| 38 |
+
|
| 39 |
+
attn_weights = F.softmax(scores, dim=-1)
|
| 40 |
+
attn_weights = self.dropout(attn_weights)
|
| 41 |
+
|
| 42 |
+
# Apply attention to values
|
| 43 |
+
out = torch.matmul(attn_weights, v).transpose(1, 2).reshape(batch_size, seq_len, d_model)
|
| 44 |
+
return self.o_proj(out)
|
Model/prelude_Block.py
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from typing import Optional, Tuple
|
| 5 |
+
from Model.multi_head_Attention import MultiHeadAttention
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
# Prelude Block (Initial Processing)
|
| 9 |
+
class PreludeBlock(nn.Module):
|
| 10 |
+
def __init__(self, vocab_size: int, d_model: int, num_heads: int, dropout: float = 0.1):
|
| 11 |
+
super().__init__()
|
| 12 |
+
self.token_embedding = nn.Embedding(vocab_size, d_model)
|
| 13 |
+
self.pos_encoding = nn.Parameter(torch.zeros(1, 1024, d_model))
|
| 14 |
+
self.attention = MultiHeadAttention(d_model, num_heads, dropout)
|
| 15 |
+
self.norm1, self.norm2 = nn.LayerNorm(d_model), nn.LayerNorm(d_model)
|
| 16 |
+
self.feed_forward = nn.Sequential(
|
| 17 |
+
nn.Linear(d_model, 4 * d_model),
|
| 18 |
+
nn.GELU(),
|
| 19 |
+
nn.Linear(4 * d_model, d_model),
|
| 20 |
+
nn.Dropout(dropout)
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
| 24 |
+
seq_len = x.size(1)
|
| 25 |
+
x = self.token_embedding(x) + self.pos_encoding[:, :seq_len, :]
|
| 26 |
+
attended = self.attention(self.norm1(x), mask)
|
| 27 |
+
x = x + attended
|
| 28 |
+
return x + self.feed_forward(self.norm2(x))
|
Model/recurrent_Block.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from typing import Optional, Tuple
|
| 5 |
+
from Model.multi_head_Attention import MultiHeadAttention
|
| 6 |
+
|
| 7 |
+
# Recurrent Block (Processing Over Time)
|
| 8 |
+
class RecurrentBlock(nn.Module):
|
| 9 |
+
def __init__(self, d_model: int, num_heads: int, dropout: float = 0.1):
|
| 10 |
+
super().__init__()
|
| 11 |
+
self.attention = MultiHeadAttention(d_model, num_heads, dropout)
|
| 12 |
+
self.norm1, self.norm2 = nn.LayerNorm(d_model), nn.LayerNorm(d_model)
|
| 13 |
+
self.feed_forward = nn.Sequential(
|
| 14 |
+
nn.Linear(d_model, 4 * d_model),
|
| 15 |
+
nn.GELU(),
|
| 16 |
+
nn.Linear(4 * d_model, d_model),
|
| 17 |
+
nn.Dropout(dropout)
|
| 18 |
+
)
|
| 19 |
+
self.state_proj = nn.Linear(d_model, d_model)
|
| 20 |
+
|
| 21 |
+
def forward(self, x: torch.Tensor, recurrent_state: torch.Tensor, mask: Optional[torch.Tensor] = None) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 22 |
+
recurrent_state = self.state_proj(recurrent_state)
|
| 23 |
+
x = x + recurrent_state
|
| 24 |
+
attended = self.attention(self.norm1(x), mask)
|
| 25 |
+
return x + attended + self.feed_forward(self.norm2(x)), x
|