Update modeling_latent_recurrent_depth.py
Browse files
modeling_latent_recurrent_depth.py
CHANGED
|
@@ -1,75 +1,75 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
import torch.nn as nn
|
| 3 |
-
import torch.nn.functional as F
|
| 4 |
-
from typing import Optional, Tuple
|
| 5 |
-
import math
|
| 6 |
-
from transformers import PretrainedConfig, PreTrainedModel
|
| 7 |
-
from
|
| 8 |
-
|
| 9 |
-
# Configuration for the Latent Recurrent Depth Model
|
| 10 |
-
class LatentRecurrentDepthConfig(PretrainedConfig):
|
| 11 |
-
model_type = "latent_recurrent_depth"
|
| 12 |
-
|
| 13 |
-
def __init__(self, vocab_size=50257, d_model=768, num_heads=12, dropout=0.1, **kwargs):
|
| 14 |
-
super().__init__(**kwargs)
|
| 15 |
-
self.vocab_size = vocab_size
|
| 16 |
-
self.d_model = d_model
|
| 17 |
-
self.num_heads = num_heads
|
| 18 |
-
self.dropout = dropout
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
# Hugging Face-Compatible Model Wrapper
|
| 22 |
-
class LatentRecurrentDepthModel(PreTrainedModel):
|
| 23 |
-
config_class = LatentRecurrentDepthConfig
|
| 24 |
-
base_model_prefix = "latent_recurrent_depth"
|
| 25 |
-
|
| 26 |
-
def __init__(self, config: LatentRecurrentDepthConfig):
|
| 27 |
-
super().__init__(config)
|
| 28 |
-
self.latent_model = LatentRecurrentDepthLM(config.vocab_size, config.d_model, config.num_heads, config.dropout)
|
| 29 |
-
self.init_weights()
|
| 30 |
-
|
| 31 |
-
def forward(self, input_ids: torch.Tensor, num_iterations: int, mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
| 32 |
-
return self.latent_model(input_ids, num_iterations, mask)
|
| 33 |
-
|
| 34 |
-
def generate(
|
| 35 |
-
self,
|
| 36 |
-
input_ids: torch.Tensor,
|
| 37 |
-
max_length: int = 20,
|
| 38 |
-
num_iterations: int = 3,
|
| 39 |
-
temperature: float = 1.0,
|
| 40 |
-
top_k: Optional[int] = 50,
|
| 41 |
-
) -> torch.Tensor:
|
| 42 |
-
"""
|
| 43 |
-
Generate a sequence of tokens given input_ids.
|
| 44 |
-
|
| 45 |
-
Args:
|
| 46 |
-
input_ids: torch.Tensor of shape (batch, seq_length) containing the prompt.
|
| 47 |
-
max_length: The number of tokens to generate.
|
| 48 |
-
num_iterations: The number of recurrent iterations to use in each forward pass.
|
| 49 |
-
temperature: Temperature for scaling logits.
|
| 50 |
-
top_k: If set, only sample from the top k tokens.
|
| 51 |
-
|
| 52 |
-
Returns:
|
| 53 |
-
generated: torch.Tensor containing the generated sequence.
|
| 54 |
-
"""
|
| 55 |
-
generated = input_ids.clone()
|
| 56 |
-
self.eval()
|
| 57 |
-
with torch.no_grad():
|
| 58 |
-
for _ in range(max_length):
|
| 59 |
-
# Get logits from the model for the current sequence.
|
| 60 |
-
logits = self.forward(generated, num_iterations=num_iterations)
|
| 61 |
-
# Use only the logits for the last token in the sequence.
|
| 62 |
-
next_token_logits = logits[:, -1, :] / temperature
|
| 63 |
-
if top_k is not None:
|
| 64 |
-
# Top-k filtering
|
| 65 |
-
top_k_logits, top_k_indices = torch.topk(next_token_logits, top_k)
|
| 66 |
-
probabilities = F.softmax(top_k_logits, dim=-1)
|
| 67 |
-
next_token = top_k_indices.gather(-1, torch.multinomial(probabilities, num_samples=1))
|
| 68 |
-
else:
|
| 69 |
-
probabilities = F.softmax(next_token_logits, dim=-1)
|
| 70 |
-
next_token = torch.multinomial(probabilities, num_samples=1)
|
| 71 |
-
generated = torch.cat([generated, next_token], dim=1)
|
| 72 |
-
# Optionally, break if the EOS token is generated.
|
| 73 |
-
if next_token.item() == self.config.eos_token_id:
|
| 74 |
-
break
|
| 75 |
-
return generated
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from typing import Optional, Tuple
|
| 5 |
+
import math
|
| 6 |
+
from transformers import PretrainedConfig, PreTrainedModel
|
| 7 |
+
from model.latent_Recurrent import LatentRecurrentDepthLM
|
| 8 |
+
|
| 9 |
+
# Configuration for the Latent Recurrent Depth Model
|
| 10 |
+
class LatentRecurrentDepthConfig(PretrainedConfig):
|
| 11 |
+
model_type = "latent_recurrent_depth"
|
| 12 |
+
|
| 13 |
+
def __init__(self, vocab_size=50257, d_model=768, num_heads=12, dropout=0.1, **kwargs):
|
| 14 |
+
super().__init__(**kwargs)
|
| 15 |
+
self.vocab_size = vocab_size
|
| 16 |
+
self.d_model = d_model
|
| 17 |
+
self.num_heads = num_heads
|
| 18 |
+
self.dropout = dropout
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
# Hugging Face-Compatible Model Wrapper
|
| 22 |
+
class LatentRecurrentDepthModel(PreTrainedModel):
|
| 23 |
+
config_class = LatentRecurrentDepthConfig
|
| 24 |
+
base_model_prefix = "latent_recurrent_depth"
|
| 25 |
+
|
| 26 |
+
def __init__(self, config: LatentRecurrentDepthConfig):
|
| 27 |
+
super().__init__(config)
|
| 28 |
+
self.latent_model = LatentRecurrentDepthLM(config.vocab_size, config.d_model, config.num_heads, config.dropout)
|
| 29 |
+
self.init_weights()
|
| 30 |
+
|
| 31 |
+
def forward(self, input_ids: torch.Tensor, num_iterations: int, mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
| 32 |
+
return self.latent_model(input_ids, num_iterations, mask)
|
| 33 |
+
|
| 34 |
+
def generate(
|
| 35 |
+
self,
|
| 36 |
+
input_ids: torch.Tensor,
|
| 37 |
+
max_length: int = 20,
|
| 38 |
+
num_iterations: int = 3,
|
| 39 |
+
temperature: float = 1.0,
|
| 40 |
+
top_k: Optional[int] = 50,
|
| 41 |
+
) -> torch.Tensor:
|
| 42 |
+
"""
|
| 43 |
+
Generate a sequence of tokens given input_ids.
|
| 44 |
+
|
| 45 |
+
Args:
|
| 46 |
+
input_ids: torch.Tensor of shape (batch, seq_length) containing the prompt.
|
| 47 |
+
max_length: The number of tokens to generate.
|
| 48 |
+
num_iterations: The number of recurrent iterations to use in each forward pass.
|
| 49 |
+
temperature: Temperature for scaling logits.
|
| 50 |
+
top_k: If set, only sample from the top k tokens.
|
| 51 |
+
|
| 52 |
+
Returns:
|
| 53 |
+
generated: torch.Tensor containing the generated sequence.
|
| 54 |
+
"""
|
| 55 |
+
generated = input_ids.clone()
|
| 56 |
+
self.eval()
|
| 57 |
+
with torch.no_grad():
|
| 58 |
+
for _ in range(max_length):
|
| 59 |
+
# Get logits from the model for the current sequence.
|
| 60 |
+
logits = self.forward(generated, num_iterations=num_iterations)
|
| 61 |
+
# Use only the logits for the last token in the sequence.
|
| 62 |
+
next_token_logits = logits[:, -1, :] / temperature
|
| 63 |
+
if top_k is not None:
|
| 64 |
+
# Top-k filtering
|
| 65 |
+
top_k_logits, top_k_indices = torch.topk(next_token_logits, top_k)
|
| 66 |
+
probabilities = F.softmax(top_k_logits, dim=-1)
|
| 67 |
+
next_token = top_k_indices.gather(-1, torch.multinomial(probabilities, num_samples=1))
|
| 68 |
+
else:
|
| 69 |
+
probabilities = F.softmax(next_token_logits, dim=-1)
|
| 70 |
+
next_token = torch.multinomial(probabilities, num_samples=1)
|
| 71 |
+
generated = torch.cat([generated, next_token], dim=1)
|
| 72 |
+
# Optionally, break if the EOS token is generated.
|
| 73 |
+
if next_token.item() == self.config.eos_token_id:
|
| 74 |
+
break
|
| 75 |
+
return generated
|