--- language: - es license: apache-2.0 tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:14907 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss base_model: jinaai/jina-embeddings-v3 widget: - source_sentence: Describe la tradición del 'rosario de candiles' en el contexto de la minería. sentences: - Un mechazo es la combustión de la mecha sin que se llegue a inflamar el barreno. - La siega tradicional en Escucha comenzaba antes de San Juan con las cebadas. - El 'rosario de candiles' es una tradición religiosa celebrada en la festividad de San Juan, en la que los mineros escuchan y acompañan con sus candiles de carburo, rezando a dos coros y cantando en parte. - source_sentence: ¿Qué significa la expresión 'pillar una mojadina'? sentences: - En el campeonato provincial de atletismo en Alcorisa en mayo, Pilar Brumos de Escucha logró la 3ª posición en 600 metros y el subcampeonato en peso. - Los empresarios de Escucha se habían unido para poder participar en las elecciones a CC.PP. ya que era necesario que la plantilla de la empresa superase el número de 50 trabajadores.. - '''Pillar una mojadina'' significa empaparse, quedar empapado.' - source_sentence: ¿En qué año Carbones de Teruel registra la mina 'pablo' en Escucha? sentences: - Puede referirse a un calcetín para bebés o a un calcetín gordo. - Carbones de Teruel registra la mina 'pablo' en Escucha en 1900. - 'Jesús Conesa explicó a la Junta de Espectáculos que el anterior propietario, Sr. Latorre Galindo, tenía otro cine en Utrillas, lo que causaba continuos equívocos en envíos de material y pagos, al creerse que ambos cines le pertenecían o eran la misma empresa. ' - source_sentence: ¿Quién regentaba el Cine Avenida de Escucha en el momento de su cierre? sentences: - Se usa con el significado de 'cuando'. - El CD Escucha alineó a Castillo, Romero, Bobadilla, Moraleda, Luis, González, Higinio, Torres, Calomarde I, Calomarde II y Navarro en el partido de Copa contra el Alcorisa. - Antonio Malpica regentaba el Cine Avenida de Escucha en el momento de su cierre. - source_sentence: ¿Qué porcentaje de aumento salarial reclamaba el Sindicato Minero en el conflicto de Utrillas que llevó a plantear la huelga del 12 de octubre de 1930? sentences: - Antonio Gargallo. - Una publicación con una fotografía para el recuerdo de la locomotora llamada 'Escucha'. - El Sindicato Minero reclamaba un aumento del 20% los sueldos en el conflicto de Utrillas. pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 model-index: - name: Lampistero results: - task: type: information-retrieval name: Information Retrieval dataset: name: dim 1024 type: dim_1024 metrics: - type: cosine_accuracy@1 value: 0.7803258901629451 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.8883524441762221 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.904043452021726 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.9233554616777309 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.7803258901629451 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.29611748139207406 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.18080869040434522 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09233554616777308 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.7803258901629451 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.8883524441762221 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.904043452021726 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.9233554616777309 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.8576141434466037 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.8359425142014155 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.8374344979701236 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 768 type: dim_768 metrics: - type: cosine_accuracy@1 value: 0.7827398913699457 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.8877489438744719 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.9034399517199758 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.9245624622812312 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.7827398913699457 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.295916314624824 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.18068799034399516 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09245624622812311 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.7827398913699457 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.8877489438744719 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.9034399517199758 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.9245624622812312 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.858770916125463 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.8371705894186279 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.8385437636605255 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 512 type: dim_512 metrics: - type: cosine_accuracy@1 value: 0.7797223898611949 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.8859384429692215 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.9010259505129753 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.9227519613759807 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.7797223898611949 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.2953128143230738 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.18020519010259503 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09227519613759806 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.7797223898611949 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.8859384429692215 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.9010259505129753 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.9227519613759807 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.8564496755344808 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.8346785163471941 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.8361853082918266 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 256 type: dim_256 metrics: - type: cosine_accuracy@1 value: 0.7706698853349426 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.8823174411587206 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.9016294508147255 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.9191309595654797 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.7706698853349426 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.2941058137195735 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.18032589016294506 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09191309595654798 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.7706698853349426 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.8823174411587206 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.9016294508147255 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.9191309595654797 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.851155539622205 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.8286940445057519 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.8302805177061129 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 128 type: dim_128 metrics: - type: cosine_accuracy@1 value: 0.7604103802051901 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.8690404345202173 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.8901629450814725 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.9130959565479783 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.7604103802051901 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.28968014484007243 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.1780325890162945 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09130959565479783 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.7604103802051901 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.8690404345202173 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.8901629450814725 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.9130959565479783 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.8415141158022221 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.8181217729497756 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.8199539602494803 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 64 type: dim_64 metrics: - type: cosine_accuracy@1 value: 0.7248038624019312 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.852142426071213 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.8750754375377188 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8974049487024743 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.7248038624019312 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.28404747535707103 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.17501508750754374 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08974049487024743 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.7248038624019312 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.852142426071213 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.8750754375377188 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.8974049487024743 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.8181789750224895 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.7920167926353802 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.793825252598125 name: Cosine Map@100 --- # Lampistero This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [jinaai/jina-embeddings-v3](https://huggingface.co/jinaai/jina-embeddings-v3) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [jinaai/jina-embeddings-v3](https://huggingface.co/jinaai/jina-embeddings-v3) - **Maximum Sequence Length:** 8194 tokens - **Output Dimensionality:** 1024 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - json - **Language:** es - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (transformer): Transformer( (auto_model): XLMRobertaLoRA( (roberta): XLMRobertaModel( (embeddings): XLMRobertaEmbeddings( (word_embeddings): ParametrizedEmbedding( 250002, 1024, padding_idx=1 (parametrizations): ModuleDict( (weight): ParametrizationList( (0): LoRAParametrization() ) ) ) (token_type_embeddings): ParametrizedEmbedding( 1, 1024 (parametrizations): ModuleDict( (weight): ParametrizationList( (0): LoRAParametrization() ) ) ) ) (emb_drop): Dropout(p=0.1, inplace=False) (emb_ln): LayerNorm((1024,), eps=1e-05, elementwise_affine=True) (encoder): XLMRobertaEncoder( (layers): ModuleList( (0-23): 24 x Block( (mixer): MHA( (rotary_emb): RotaryEmbedding() (Wqkv): ParametrizedLinearResidual( in_features=1024, out_features=3072, bias=True (parametrizations): ModuleDict( (weight): ParametrizationList( (0): LoRAParametrization() ) ) ) (inner_attn): FlashSelfAttention( (drop): Dropout(p=0.1, inplace=False) ) (inner_cross_attn): FlashCrossAttention( (drop): Dropout(p=0.1, inplace=False) ) (out_proj): ParametrizedLinear( in_features=1024, out_features=1024, bias=True (parametrizations): ModuleDict( (weight): ParametrizationList( (0): LoRAParametrization() ) ) ) ) (dropout1): Dropout(p=0.1, inplace=False) (drop_path1): StochasticDepth(p=0.0, mode=row) (norm1): LayerNorm((1024,), eps=1e-05, elementwise_affine=True) (mlp): Mlp( (fc1): ParametrizedLinear( in_features=1024, out_features=4096, bias=True (parametrizations): ModuleDict( (weight): ParametrizationList( (0): LoRAParametrization() ) ) ) (fc2): ParametrizedLinear( in_features=4096, out_features=1024, bias=True (parametrizations): ModuleDict( (weight): ParametrizationList( (0): LoRAParametrization() ) ) ) ) (dropout2): Dropout(p=0.1, inplace=False) (drop_path2): StochasticDepth(p=0.0, mode=row) (norm2): LayerNorm((1024,), eps=1e-05, elementwise_affine=True) ) ) ) (pooler): XLMRobertaPooler( (dense): ParametrizedLinear( in_features=1024, out_features=1024, bias=True (parametrizations): ModuleDict( (weight): ParametrizationList( (0): LoRAParametrization() ) ) ) (activation): Tanh() ) ) ) ) (pooler): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (normalizer): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("csanz91/lampistero_rag_embeddings") # Run inference sentences = [ '¿Qué porcentaje de aumento salarial reclamaba el Sindicato Minero en el conflicto de Utrillas que llevó a plantear la huelga del 12 de octubre de 1930?', 'El Sindicato Minero reclamaba un aumento del 20% los sueldos en el conflicto de Utrillas.', 'Antonio Gargallo.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Dataset: `dim_1024` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters: ```json { "truncate_dim": 1024 } ``` | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.7803 | | cosine_accuracy@3 | 0.8884 | | cosine_accuracy@5 | 0.904 | | cosine_accuracy@10 | 0.9234 | | cosine_precision@1 | 0.7803 | | cosine_precision@3 | 0.2961 | | cosine_precision@5 | 0.1808 | | cosine_precision@10 | 0.0923 | | cosine_recall@1 | 0.7803 | | cosine_recall@3 | 0.8884 | | cosine_recall@5 | 0.904 | | cosine_recall@10 | 0.9234 | | **cosine_ndcg@10** | **0.8576** | | cosine_mrr@10 | 0.8359 | | cosine_map@100 | 0.8374 | #### Information Retrieval * Dataset: `dim_768` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters: ```json { "truncate_dim": 768 } ``` | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.7827 | | cosine_accuracy@3 | 0.8877 | | cosine_accuracy@5 | 0.9034 | | cosine_accuracy@10 | 0.9246 | | cosine_precision@1 | 0.7827 | | cosine_precision@3 | 0.2959 | | cosine_precision@5 | 0.1807 | | cosine_precision@10 | 0.0925 | | cosine_recall@1 | 0.7827 | | cosine_recall@3 | 0.8877 | | cosine_recall@5 | 0.9034 | | cosine_recall@10 | 0.9246 | | **cosine_ndcg@10** | **0.8588** | | cosine_mrr@10 | 0.8372 | | cosine_map@100 | 0.8385 | #### Information Retrieval * Dataset: `dim_512` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters: ```json { "truncate_dim": 512 } ``` | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.7797 | | cosine_accuracy@3 | 0.8859 | | cosine_accuracy@5 | 0.901 | | cosine_accuracy@10 | 0.9228 | | cosine_precision@1 | 0.7797 | | cosine_precision@3 | 0.2953 | | cosine_precision@5 | 0.1802 | | cosine_precision@10 | 0.0923 | | cosine_recall@1 | 0.7797 | | cosine_recall@3 | 0.8859 | | cosine_recall@5 | 0.901 | | cosine_recall@10 | 0.9228 | | **cosine_ndcg@10** | **0.8564** | | cosine_mrr@10 | 0.8347 | | cosine_map@100 | 0.8362 | #### Information Retrieval * Dataset: `dim_256` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters: ```json { "truncate_dim": 256 } ``` | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.7707 | | cosine_accuracy@3 | 0.8823 | | cosine_accuracy@5 | 0.9016 | | cosine_accuracy@10 | 0.9191 | | cosine_precision@1 | 0.7707 | | cosine_precision@3 | 0.2941 | | cosine_precision@5 | 0.1803 | | cosine_precision@10 | 0.0919 | | cosine_recall@1 | 0.7707 | | cosine_recall@3 | 0.8823 | | cosine_recall@5 | 0.9016 | | cosine_recall@10 | 0.9191 | | **cosine_ndcg@10** | **0.8512** | | cosine_mrr@10 | 0.8287 | | cosine_map@100 | 0.8303 | #### Information Retrieval * Dataset: `dim_128` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters: ```json { "truncate_dim": 128 } ``` | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.7604 | | cosine_accuracy@3 | 0.869 | | cosine_accuracy@5 | 0.8902 | | cosine_accuracy@10 | 0.9131 | | cosine_precision@1 | 0.7604 | | cosine_precision@3 | 0.2897 | | cosine_precision@5 | 0.178 | | cosine_precision@10 | 0.0913 | | cosine_recall@1 | 0.7604 | | cosine_recall@3 | 0.869 | | cosine_recall@5 | 0.8902 | | cosine_recall@10 | 0.9131 | | **cosine_ndcg@10** | **0.8415** | | cosine_mrr@10 | 0.8181 | | cosine_map@100 | 0.82 | #### Information Retrieval * Dataset: `dim_64` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters: ```json { "truncate_dim": 64 } ``` | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.7248 | | cosine_accuracy@3 | 0.8521 | | cosine_accuracy@5 | 0.8751 | | cosine_accuracy@10 | 0.8974 | | cosine_precision@1 | 0.7248 | | cosine_precision@3 | 0.284 | | cosine_precision@5 | 0.175 | | cosine_precision@10 | 0.0897 | | cosine_recall@1 | 0.7248 | | cosine_recall@3 | 0.8521 | | cosine_recall@5 | 0.8751 | | cosine_recall@10 | 0.8974 | | **cosine_ndcg@10** | **0.8182** | | cosine_mrr@10 | 0.792 | | cosine_map@100 | 0.7938 | ## Training Details ### Training Dataset #### json * Dataset: json * Size: 14,907 training samples * Columns: query and answer * Approximate statistics based on the first 1000 samples: | | query | answer | |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | query | answer | |:--------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------| | En Valdeconejos, ¿cuál era la sociedad de agricultores en 1952? | En Valdeconejos, la sociedad de agricultores en 1952 era el Pósito de Agricultores. | | ¿Qué nombres de capataces se registran en el pueblo de Escucha en el año 1952? | En Escucha, en 1952, los capataces registrados son Peralta (Manuel) y Rodriguez (Gonzalo). | | En el contexto de la minería, ¿qué implica 'despajar'? | 'Despajar' se refiere a cribar a mano material y desechos para obtener las partes de carbón que hay en ellos. | * Loss: [MatryoshkaLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 1024, 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 16 - `gradient_accumulation_steps`: 32 - `learning_rate`: 2e-05 - `num_train_epochs`: 12 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `tf32`: True - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 32 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 12 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: True - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `tp_size`: 0 - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | dim_1024_cosine_ndcg@10 | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 | |:-------:|:----:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:| | 1.0 | 8 | - | 0.7663 | 0.7676 | 0.7656 | 0.7626 | 0.7393 | 0.6969 | | 1.2747 | 10 | 127.0406 | - | - | - | - | - | - | | 2.0 | 16 | - | 0.8244 | 0.8240 | 0.8226 | 0.8172 | 0.8060 | 0.7775 | | 2.5494 | 20 | 38.8995 | - | - | - | - | - | - | | 3.0 | 24 | - | 0.8425 | 0.8426 | 0.8444 | 0.8373 | 0.8252 | 0.7996 | | 3.8240 | 30 | 20.1528 | - | - | - | - | - | - | | 4.0 | 32 | - | 0.8526 | 0.8520 | 0.8498 | 0.8456 | 0.8289 | 0.8037 | | 5.0 | 40 | 14.0513 | 0.8550 | 0.8543 | 0.8517 | 0.8490 | 0.8368 | 0.8139 | | 6.0 | 48 | - | 0.8572 | 0.8565 | 0.8557 | 0.8520 | 0.8404 | 0.8170 | | 6.2747 | 50 | 13.364 | - | - | - | - | - | - | | 7.0 | 56 | - | 0.8579 | 0.8576 | 0.8553 | 0.8514 | 0.8422 | 0.8180 | | 7.5494 | 60 | 12.7986 | - | - | - | - | - | - | | 8.0 | 64 | - | 0.8573 | 0.8580 | 0.8560 | 0.8523 | 0.8414 | 0.8178 | | 8.8240 | 70 | 12.0091 | - | - | - | - | - | - | | 9.0 | 72 | - | 0.8578 | 0.8586 | 0.8562 | 0.8519 | 0.8423 | 0.8184 | | 10.0 | 80 | 10.9468 | 0.8583 | 0.8589 | 0.8565 | 0.8530 | 0.8413 | 0.8191 | | 10.5494 | 84 | - | 0.8576 | 0.8588 | 0.8564 | 0.8512 | 0.8415 | 0.8182 | ### Framework Versions - Python: 3.12.10 - Sentence Transformers: 4.1.0 - Transformers: 4.51.3 - PyTorch: 2.7.0+cu126 - Accelerate: 1.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```