File size: 35,639 Bytes
8d8df3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 |
---
language:
- es
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:14907
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: jinaai/jina-embeddings-v3
widget:
- source_sentence: ¿Qué característica especial tenía la escultura del 'Torico' creada
por Pedro Blesa?
sentences:
- 'Después de dorar el conejo en la receta de Conejo escabechado, en la misma sartén
se rehogan los ajos, con el laurel y la pimienta.
'
- Rafael Barcelón se encargaba del servicio de electricidad en Valdeconejos en 1951.
- La escultura del 'Torico' creada por Pedro Blesa era un anaglifo, visible en 3D
con gafas especiales.
- source_sentence: ¿Por qué cantidad adquirió Francisco Santacruz la mina Escuadra
en la subasta pública?
sentences:
- Después de la temporada 1986-87, el equipo descendió, lo que provocó su desaparición
del campeonato en la temporada 1987-88.
- '''Al bies'' significa en diagonal.'
- Francisco Santacruz adquirió la mina Escuadra por la cantidad de 931 pesetas.
- source_sentence: ¿Quién se desempeñaba como fiscal en el ayuntamiento de Escucha
en el año 1916?
sentences:
- El autor mencionado para la receta Sopas de ajo es Teo Martin Lafuente.
- En Escucha en 1916, D. Joaquín Latorre del Río se desempeñaba como fiscal.
- Felipe Mallén era el farmacéutico en Valdeconejos en 1928.
- source_sentence: ¿Qué información transmiten los 'toques' en la caña de un pozo
durante las operaciones mineras?
sentences:
- Juan Pedro Martín encontró fragmentos de carbón de piedra en el paraje de El Horcajo.
- Se publicó en 1970 por Ediciones Cultura y Acción. CNT.
- 'Los ''toques'' son señales que se hacen en la caña del pozo para las distintas
operaciones 1: alto 2: arriba 3: abajo 1+2: despacio arriba 1+3: despacio abajo
4+2: personal arriba 4+3: personal abajo 4+1+2: señalista en jaula arriba 4+1+3:
señalista en jaula abajo 5: jaula libre 6: maniobra'
- source_sentence: ¿En qué año se demarcó y reconoció la mina 'El Pilar'?
sentences:
- Según la quinta demanda del SOMM, todas compañías mineras debían entregar a todos
sus obreros un libramiento de liquidación mensual
- '''Tontiar'' significa cuando dos jóvenes empiezan con un noviazgo.'
- La mina 'El Pilar' se demarcó y reconoció en 1857.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: Lampistero
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 1024
type: dim_1024
metrics:
- type: cosine_accuracy@1
value: 0.7700663850331925
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8925769462884732
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9155099577549789
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9330114665057333
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7700663850331925
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2975256487628244
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18310199155099577
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09330114665057333
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7700663850331925
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8925769462884732
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9155099577549789
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9330114665057333
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8578914781807897
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8330619976817926
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8343424106284848
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.7694628847314424
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8889559444779722
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9124924562462281
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9330114665057333
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7694628847314424
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.29631864815932407
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1824984912492456
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09330114665057332
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7694628847314424
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8889559444779722
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9124924562462281
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9330114665057333
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8571049923900239
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8320899311243306
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8333457816447034
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.7682558841279421
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8865419432709717
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9112854556427278
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9305974652987327
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7682558841279421
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2955139810903239
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18225709112854557
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09305974652987326
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7682558841279421
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8865419432709717
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9112854556427278
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9305974652987327
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8555277012951626
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8307227155597702
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8321030396467847
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.764031382015691
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8901629450814725
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9082679541339771
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9299939649969825
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.764031382015691
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2967209816938242
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1816535908267954
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09299939649969825
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.764031382015691
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8901629450814725
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9082679541339771
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9299939649969825
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8535167149096011
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8282907530342651
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8296119986031772
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.7447193723596862
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8768859384429692
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9028364514182257
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9215449607724804
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7447193723596862
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2922953128143231
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1805672902836451
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09215449607724803
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7447193723596862
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8768859384429692
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9028364514182257
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9215449607724804
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8402664516336745
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8133905221714518
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8148588407289652
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.7103198551599276
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8491249245624622
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8780929390464696
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.899818949909475
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7103198551599276
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2830416415208208
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1756185878092939
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08998189499094747
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7103198551599276
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8491249245624622
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8780929390464696
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.899818949909475
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8119294706592789
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7829293234091058
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7850878407159746
name: Cosine Map@100
---
# Lampistero
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [jinaai/jina-embeddings-v3](https://huggingface.co/jinaai/jina-embeddings-v3) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [jinaai/jina-embeddings-v3](https://huggingface.co/jinaai/jina-embeddings-v3) <!-- at revision f1944de8402dcd5f2b03f822a4bc22a7f2de2eb9 -->
- **Maximum Sequence Length:** 8194 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
- **Language:** es
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(transformer): Transformer(
(auto_model): XLMRobertaLoRA(
(roberta): XLMRobertaModel(
(embeddings): XLMRobertaEmbeddings(
(word_embeddings): ParametrizedEmbedding(
250002, 1024, padding_idx=1
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
(token_type_embeddings): ParametrizedEmbedding(
1, 1024
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
)
(emb_drop): Dropout(p=0.1, inplace=False)
(emb_ln): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(encoder): XLMRobertaEncoder(
(layers): ModuleList(
(0-23): 24 x Block(
(mixer): MHA(
(rotary_emb): RotaryEmbedding()
(Wqkv): ParametrizedLinearResidual(
in_features=1024, out_features=3072, bias=True
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
(inner_attn): FlashSelfAttention(
(drop): Dropout(p=0.1, inplace=False)
)
(inner_cross_attn): FlashCrossAttention(
(drop): Dropout(p=0.1, inplace=False)
)
(out_proj): ParametrizedLinear(
in_features=1024, out_features=1024, bias=True
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
)
(dropout1): Dropout(p=0.1, inplace=False)
(drop_path1): StochasticDepth(p=0.0, mode=row)
(norm1): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(mlp): Mlp(
(fc1): ParametrizedLinear(
in_features=1024, out_features=4096, bias=True
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
(fc2): ParametrizedLinear(
in_features=4096, out_features=1024, bias=True
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
)
(dropout2): Dropout(p=0.1, inplace=False)
(drop_path2): StochasticDepth(p=0.0, mode=row)
(norm2): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
)
)
)
(pooler): XLMRobertaPooler(
(dense): ParametrizedLinear(
in_features=1024, out_features=1024, bias=True
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
(activation): Tanh()
)
)
)
)
(pooler): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(normalizer): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("csanz91/lampistero_rag_embeddings_2")
# Run inference
sentences = [
"¿En qué año se demarcó y reconoció la mina 'El Pilar'?",
"La mina 'El Pilar' se demarcó y reconoció en 1857.",
'Según la quinta demanda del SOMM, todas compañías mineras debían entregar a todos sus obreros un libramiento de liquidación mensual',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_1024`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
```json
{
"truncate_dim": 1024
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7701 |
| cosine_accuracy@3 | 0.8926 |
| cosine_accuracy@5 | 0.9155 |
| cosine_accuracy@10 | 0.933 |
| cosine_precision@1 | 0.7701 |
| cosine_precision@3 | 0.2975 |
| cosine_precision@5 | 0.1831 |
| cosine_precision@10 | 0.0933 |
| cosine_recall@1 | 0.7701 |
| cosine_recall@3 | 0.8926 |
| cosine_recall@5 | 0.9155 |
| cosine_recall@10 | 0.933 |
| **cosine_ndcg@10** | **0.8579** |
| cosine_mrr@10 | 0.8331 |
| cosine_map@100 | 0.8343 |
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
```json
{
"truncate_dim": 768
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7695 |
| cosine_accuracy@3 | 0.889 |
| cosine_accuracy@5 | 0.9125 |
| cosine_accuracy@10 | 0.933 |
| cosine_precision@1 | 0.7695 |
| cosine_precision@3 | 0.2963 |
| cosine_precision@5 | 0.1825 |
| cosine_precision@10 | 0.0933 |
| cosine_recall@1 | 0.7695 |
| cosine_recall@3 | 0.889 |
| cosine_recall@5 | 0.9125 |
| cosine_recall@10 | 0.933 |
| **cosine_ndcg@10** | **0.8571** |
| cosine_mrr@10 | 0.8321 |
| cosine_map@100 | 0.8333 |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
```json
{
"truncate_dim": 512
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7683 |
| cosine_accuracy@3 | 0.8865 |
| cosine_accuracy@5 | 0.9113 |
| cosine_accuracy@10 | 0.9306 |
| cosine_precision@1 | 0.7683 |
| cosine_precision@3 | 0.2955 |
| cosine_precision@5 | 0.1823 |
| cosine_precision@10 | 0.0931 |
| cosine_recall@1 | 0.7683 |
| cosine_recall@3 | 0.8865 |
| cosine_recall@5 | 0.9113 |
| cosine_recall@10 | 0.9306 |
| **cosine_ndcg@10** | **0.8555** |
| cosine_mrr@10 | 0.8307 |
| cosine_map@100 | 0.8321 |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
```json
{
"truncate_dim": 256
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.764 |
| cosine_accuracy@3 | 0.8902 |
| cosine_accuracy@5 | 0.9083 |
| cosine_accuracy@10 | 0.93 |
| cosine_precision@1 | 0.764 |
| cosine_precision@3 | 0.2967 |
| cosine_precision@5 | 0.1817 |
| cosine_precision@10 | 0.093 |
| cosine_recall@1 | 0.764 |
| cosine_recall@3 | 0.8902 |
| cosine_recall@5 | 0.9083 |
| cosine_recall@10 | 0.93 |
| **cosine_ndcg@10** | **0.8535** |
| cosine_mrr@10 | 0.8283 |
| cosine_map@100 | 0.8296 |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
```json
{
"truncate_dim": 128
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7447 |
| cosine_accuracy@3 | 0.8769 |
| cosine_accuracy@5 | 0.9028 |
| cosine_accuracy@10 | 0.9215 |
| cosine_precision@1 | 0.7447 |
| cosine_precision@3 | 0.2923 |
| cosine_precision@5 | 0.1806 |
| cosine_precision@10 | 0.0922 |
| cosine_recall@1 | 0.7447 |
| cosine_recall@3 | 0.8769 |
| cosine_recall@5 | 0.9028 |
| cosine_recall@10 | 0.9215 |
| **cosine_ndcg@10** | **0.8403** |
| cosine_mrr@10 | 0.8134 |
| cosine_map@100 | 0.8149 |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
```json
{
"truncate_dim": 64
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7103 |
| cosine_accuracy@3 | 0.8491 |
| cosine_accuracy@5 | 0.8781 |
| cosine_accuracy@10 | 0.8998 |
| cosine_precision@1 | 0.7103 |
| cosine_precision@3 | 0.283 |
| cosine_precision@5 | 0.1756 |
| cosine_precision@10 | 0.09 |
| cosine_recall@1 | 0.7103 |
| cosine_recall@3 | 0.8491 |
| cosine_recall@5 | 0.8781 |
| cosine_recall@10 | 0.8998 |
| **cosine_ndcg@10** | **0.8119** |
| cosine_mrr@10 | 0.7829 |
| cosine_map@100 | 0.7851 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 14,907 training samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
| | query | answer |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 26.09 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 34.02 tokens</li><li>max: 405 tokens</li></ul> |
* Samples:
| query | answer |
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>¿Qué tipos de palas se utilizan para cargar el carbón y el mineral?</code> | <code>Se utiliza una pala convencional y una pala hidráulica, esta última descarga sobre un páncer, puede hacerlo lateralmente y se desplaza sobre ruedas u oruga.</code> |
| <code>Tras el cierre de la tejería de Florencio Salvador, ¿de dónde procedieron finalmente los ladrillos para las doscientas diez viviendas construidas en Utrillas?</code> | <code>Los ladrillos y material para las doscientas diez viviendas construidas en Utrillas procedieron finalmente de Letux, Zaragoza .</code> |
| <code>¿Cuál es el formato de los juegos infantiles que se están preparando para el verano en Escucha en 2021?</code> | <code>Los juegos infantiles que se están preparando para el verano en Escucha en 2021 están en formato revista.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 32
- `learning_rate`: 2e-05
- `num_train_epochs`: 8
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 32
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 8
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | dim_1024_cosine_ndcg@10 | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|:------:|:----:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 1.0 | 8 | - | 0.7841 | 0.7835 | 0.7836 | 0.7791 | 0.7665 | 0.7226 |
| 1.2747 | 10 | 58.1187 | - | - | - | - | - | - |
| 2.0 | 16 | - | 0.8348 | 0.8366 | 0.8345 | 0.8301 | 0.8184 | 0.7861 |
| 2.5494 | 20 | 24.4181 | - | - | - | - | - | - |
| 3.0 | 24 | - | 0.8521 | 0.8504 | 0.8503 | 0.8457 | 0.8319 | 0.8007 |
| 3.8240 | 30 | 16.1488 | - | - | - | - | - | - |
| 4.0 | 32 | - | 0.8561 | 0.8548 | 0.8555 | 0.8509 | 0.8387 | 0.8073 |
| 5.0 | 40 | 13.4897 | 0.8585 | 0.8556 | 0.8545 | 0.8528 | 0.8397 | 0.8111 |
| 6.0 | 48 | - | 0.8578 | 0.8563 | 0.8550 | 0.8535 | 0.8410 | 0.8110 |
| 6.2747 | 50 | 13.7469 | - | - | - | - | - | - |
| 7.0 | 56 | - | 0.8579 | 0.8571 | 0.8555 | 0.8535 | 0.8403 | 0.8119 |
### Framework Versions
- Python: 3.12.10
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.7.0+cu126
- Accelerate: 1.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |