File size: 16,074 Bytes
b0c0df0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
import abc
import collections
import gc
import hashlib
import json
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple, Type, TypeVar
import torch
import torch.distributed as dist
import torch.nn as nn
from loguru import logger as eval_logger
from sqlitedict import SqliteDict
from tqdm import tqdm
from lmms_eval import utils
from lmms_eval.api.instance import Instance
T = TypeVar("T", bound="lmms")
LMMS_EVAL_HOME = os.path.expanduser(os.getenv("LMMS_EVAL_HOME", "~/.cache/lmms-eval"))
LMMS_EVAL_USE_CACHE = os.getenv("LMMS_EVAL_USE_CACHE", "False")
class lmms(abc.ABC):
is_simple: bool = True
def __init__(self) -> None:
"""Defines the interface that should be implemented by all lmms subclasses.
lmmss are assumed to take image-text as input and yield strings as output
(inputs/outputs should be tokenization-agnostic.)
"""
# set rank and world size to a single process, by default.
self._rank = 0
self._world_size = 1
self.cache_hook = CacheHook(None)
self.task_dict = {}
self.cache_dict = collections.defaultdict(dict)
self.initialized_cache_dir = False
def prepare_cache_dir(self):
if self.initialized_cache_dir:
return
# initialize cache directory for this model instance
resolved_name = self._resolve_model_name_for_cache()
cache_hash = self.generate_cache_folder_hash_name(resolved_name)
self._cache_dir = os.path.join(LMMS_EVAL_HOME, "eval_cache", cache_hash)
eval_logger.info(f"Resolved model folder for cache: {self._cache_dir}")
self.initialized_cache_dir = True
def generate_cache_folder_hash_name(self, model_name: str):
"""
Generate a cache hash for a model
"""
task_dict_keys = list(self.task_dict.keys())
class_name = type(self).__name__
hash_string = "|".join(task_dict_keys)
text_hash = unicodedata.normalize("NFC", hash_string)
text_hash = text_hash.replace("\r\n", "\n").replace("\r", "\n")
hash_string = hashlib.sha256(text_hash.encode("utf-8")).hexdigest()
model_name = os.path.basename(model_name)
folder_name = class_name + "_" + model_name + "_" + hash_string
return folder_name
def _resolve_model_name_for_cache(self) -> str:
"""
Best-effort resolution of a human-readable model identifier for cache naming.
Checks common attributes; falls back to class name.
"""
for attr_name in ("model_name", "model_version", "model_id", "pretrained", "fps", "max_pixels", "min_pixels"):
value = getattr(self, attr_name, None)
if isinstance(value, str) and value:
return value
value = getattr(self, "model", None)
if isinstance(value, str) and value:
return value
return type(self).__name__
@property
def get_model_cache_dir(self) -> str:
"""
Property returning the initialized cache directory for this model instance.
"""
return self._cache_dir
def get_rank_and_world_size(self) -> Tuple[int, int]:
"""
Get the rank and world size for the current process
"""
# The rank and world size is a bit chaotic in current many ... many model implementations
# So we use torch.distributed to get the rank and world size here instead of self.rank and self.world_size
# fallback if not initialized
if dist.is_initialized():
return dist.get_rank(), dist.get_world_size()
return self.rank, self.world_size
def ensure_model_cache_dir(self) -> str:
"""
Ensure the cache directory for a given model exists, and return its path.
"""
os.makedirs(self.get_model_cache_dir, exist_ok=True)
return self.get_model_cache_dir
def load_cache(self):
if LMMS_EVAL_USE_CACHE == "True":
self.prepare_cache_dir()
self.cache_dict = self.load_jsonl_cache()
else:
self.cache_dict = collections.defaultdict(dict)
def load_jsonl_cache(self) -> Dict[str, Dict[str, Any]]:
"""
Load all .jsonl files in the model's cache directory.
Returns a dict mapping filename (base name) -> list of records.
Missing directory returns empty dict.
"""
cache_dir = self.get_model_cache_dir
if not os.path.isdir(cache_dir):
return collections.defaultdict(dict)
rank, world_size = self.get_rank_and_world_size()
files = [f"{task_name}_rank{rank}_world_size{world_size}.jsonl" for task_name in self.task_dict.keys()]
cache_data: Dict[str, Dict[str, Any]] = collections.defaultdict(dict)
try:
for task_name, fname in zip(self.task_dict.keys(), files):
full_path = os.path.join(cache_dir, fname)
records: Dict[str, Any] = collections.defaultdict(dict)
try:
with open(full_path, "r", encoding="utf-8") as f:
for line in f:
line = line.strip()
try:
line = json.loads(line)
records[line["doc_id"]] = line["response"]
except (json.JSONDecodeError, KeyError):
eval_logger.warning(f"Skipping malformed JSONL line in {full_path}")
except FileNotFoundError:
# If file disappears during read, skip
continue
cache_data[task_name] = records.copy()
except FileNotFoundError:
# Directory disappeared between checks
return collections.defaultdict(dict)
except Exception as e:
eval_logger.error(f"Error loading cache from {full_path}: {e}")
return collections.defaultdict(dict)
return cache_data
def _extract_doc_id(self, request: Instance) -> Any:
"""
TODO: Implement logic to extract `doc_id` from a request.
This method should return a JSON-serializable identifier (e.g., int or str).
"""
try:
ctx, doc_to_messages, gen_kwargs, doc_id, task, split = request.args
except Exception as e:
contexts, gen_kwargs, doc_to_visual, doc_id, task, split = request.arguments
return doc_id
def _append_request_response_to_cache(
self,
request: Instance,
response: str,
task_name: str,
) -> str:
"""
Append a single request/response record to a JSONL cache file under the
model's cache directory. The record format is:
{"doc_id": <doc_id>, "response": <response>}
Returns the full path of the file written to.
"""
cache_dir = self.ensure_model_cache_dir()
rank, world_size = self.get_rank_and_world_size()
base = f"{task_name}_rank{rank}_world_size{world_size}.jsonl"
file_path = os.path.join(cache_dir, base)
# Obtain doc_id via user-implemented logic
doc_id = self._extract_doc_id(request)
record = {"doc_id": doc_id, "response": response}
self.cache_dict[task_name][doc_id] = record
line = json.dumps(record, ensure_ascii=False)
# Append in text mode with UTF-8 encoding
with open(file_path, "a", encoding="utf-8") as f:
f.write(line + "\n")
return file_path
def add_request_response_to_cache(self, request: Instance, response: str):
"""
Add a request and response to the cache
"""
if LMMS_EVAL_USE_CACHE == "True":
self._append_request_response_to_cache(request, response, request.task_name)
def get_response_from_cache(self, requests: List[Instance]) -> Tuple[List[str], List[Instance]]:
"""
Get the response from the cache
"""
if LMMS_EVAL_USE_CACHE == "False":
return [], requests
not_cached_requests = []
responses = []
for request in requests:
if request.doc_id not in self.cache_dict[request.task_name]:
not_cached_requests.append(request)
else:
responses.append(self.cache_dict[request.task_name][request.doc_id])
eval_logger.info(f"Loaded {len(responses)} responses from cache")
eval_logger.info(f"Not cached {len(not_cached_requests)} requests")
return responses, not_cached_requests
@abc.abstractmethod
def loglikelihood(self, requests: List[Instance]) -> List[Tuple[float, bool]]:
"""Compute log-likelihood of generating a continuation from a context.
Downstream tasks should attempt to use loglikelihood instead of other
LMM calls whenever possible.
:param requests: list[Instance]
A list of Instance objects, with property `args` which returns a tuple (context, continuation).
`context: str`
Context string. Implementations of LMM must be able to handle an
empty context string.
`continuation: str`
The continuation over which log likelihood will be calculated. If
there is a word boundary, the space should be in the continuation.
For example, context="hello" continuation=" world" is correct.
'visual_list: list[dict]'
Visual input to the model. Can be None.
:return: list[tuple[float, bool]]
A list of pairs (logprob, isgreedy)
`logprob: float`
The log probability of `continuation`.
`isgreedy`:
Whether `continuation` would be generated by greedy sampling from `context`.
"""
pass
# TODO: Add an optional max length
@abc.abstractmethod
def generate_until(self, requests) -> List[str]:
"""Generate greedily until a stopping sequence
:param requests: list[Instance]
A list of Instance objects with property `args` which returns a tuple (context, until).
context: str
Context string
generation_kwargs: dict
Generation Kwargs
'visual_list: list[dict]'
Visual input to the model. Can be None.
:return: list[str]
A list of strings continuation
continuation: str
The generated continuation.
"""
pass
@abc.abstractmethod
def generate_until_multi_round(self, requests) -> List[str]:
"""Generate greedily until a stopping sequence
:param requests: list[Instance]
A list of Instance objects with property `args` which returns a tuple (context, until).
context: str
Context string
generation_kwargs: dict
Generation Kwargs
'visual_list: list[dict]'
Visual input to the model. Can be None.
:return: list[str]
A list of strings continuation
continuation: str
The generated continuation.
"""
pass
@classmethod
def create_from_arg_string(cls: Type[T], arg_string: str, additional_config: Optional[dict] = None) -> T:
"""
Creates an instance of the LMM class using the given argument string and additional config.
Parameters:
- arg_string: A string containing arguments in the format key1=value1,key2=value2.
- additional_config: Optional dictionary containing additional configuration parameters.
Returns:
- Instance of the LMM class.
"""
additional_config = {} if additional_config is None else additional_config
args = utils.simple_parse_args_string(arg_string)
args2 = {k: v for k, v in additional_config.items() if v is not None}
return cls(**args, **args2)
@property
def rank(self):
# used in the case of parallelism. Hardcoded to
# ensure no errors arise using API models which do
# not support multi-device parallelism nor expect it.
return self._rank
@property
def world_size(self):
# used in the case of parallelism. Hardcoded to
# ensure no errors arise using API models which do
# not support multi-device parallelism nor expect it.
return self._world_size
def set_cache_hook(self, cache_hook) -> None:
self.cache_hook = cache_hook
def clean(self):
for attr_name in list(vars(self)):
attr_value = getattr(self, attr_name)
if isinstance(attr_value, nn.Module):
delattr(self, attr_name)
gc.collect()
torch.cuda.empty_cache()
### SQLite-based caching of LMM responses
def hash_args(attr, args):
dat = json.dumps([attr] + list(args))
return hashlib.sha256(dat.encode("utf-8")).hexdigest()
class CacheHook:
def __init__(self, cachinglm) -> None:
if cachinglm is None:
self.dbdict = None
return
self.dbdict = cachinglm.dbdict
def add_partial(self, attr, req, res) -> None:
if self.dbdict is None:
return
hsh = hash_args(attr, req)
self.dbdict[hsh] = res
class CachingLMM:
def __init__(self, lm, cache_db) -> None:
"""LMM wrapper that returns cached results if they exist, and uses the underlying LMM if not.
:param lm: LMM
Underlying LMM
:param cache_db: str
Path to cache db
"""
self.lm = lm
self.cache_db = cache_db
if os.path.dirname(cache_db):
os.makedirs(os.path.dirname(cache_db), exist_ok=True)
self.dbdict = SqliteDict(cache_db, autocommit=True)
# add hook to lm
lm.set_cache_hook(self.get_cache_hook())
def __getattr__(self, attr):
lm_attr = getattr(self.lm, attr)
if not callable(lm_attr):
return lm_attr
def fn(requests):
res = []
remaining_reqs = []
warned = False
# figure out which ones are cached and which ones are new
eval_logger.info(f"Loading '{attr}' responses from cache '{self.cache_db}' where possible...")
for req in tqdm(requests):
hsh = hash_args(attr, req.args)
if attr in ["generate_until", "generate_until_multi_round"] and req.args[1].get("do_sample", False):
# when we are doing non-greedy generation, don't use the cache
# (else every "randomly sampled" generation would be identical for repeats > 1).
if not warned:
eval_logger.warning(f"Arguments to lm.generate_until() '{req.args[1]}' include non-deterministic sampling. Caching will not be performed for such requests.")
warned = True
res.append(None)
remaining_reqs.append(req)
elif hsh in self.dbdict:
ob = self.dbdict[hsh]
assert ob is not None
res.append(ob)
else:
res.append(None)
remaining_reqs.append(req)
# actually run the LMM on the requests that do not have cached results
rem_res = getattr(self.lm, attr)(remaining_reqs)
# stick the new ones back into the list and also cache any of the new ones
resptr = 0
for req, r in zip(remaining_reqs, rem_res):
while res[resptr] is not None:
resptr += 1
res[resptr] = r
# caching
hsh = hash_args(attr, req.args)
self.dbdict[hsh] = r
self.dbdict.commit()
return res
return fn
def get_cache_hook(self):
return CacheHook(self)
|