|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import TYPE_CHECKING, Optional |
|
|
|
|
|
from ...data import SFTDataCollatorWith4DAttentionMask, get_dataset, get_template_and_fix_tokenizer |
|
|
from ...extras.constants import IGNORE_INDEX |
|
|
from ...extras.logging import get_logger |
|
|
from ...extras.misc import calculate_tps |
|
|
from ...extras.ploting import plot_loss |
|
|
from ...model import load_model, load_tokenizer |
|
|
from ..trainer_utils import create_modelcard_and_push |
|
|
from .metric import ComputeAccuracy, ComputeSimilarity, eval_logit_processor |
|
|
from .trainer import CustomSeq2SeqTrainer |
|
|
|
|
|
|
|
|
if TYPE_CHECKING: |
|
|
from transformers import Seq2SeqTrainingArguments, TrainerCallback |
|
|
|
|
|
from ...hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments |
|
|
|
|
|
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
|
|
|
def run_sft( |
|
|
model_args: "ModelArguments", |
|
|
data_args: "DataArguments", |
|
|
training_args: "Seq2SeqTrainingArguments", |
|
|
finetuning_args: "FinetuningArguments", |
|
|
generating_args: "GeneratingArguments", |
|
|
callbacks: Optional[list["TrainerCallback"]] = None, |
|
|
): |
|
|
tokenizer_module = load_tokenizer(model_args) |
|
|
tokenizer = tokenizer_module["tokenizer"] |
|
|
template = get_template_and_fix_tokenizer(tokenizer, data_args) |
|
|
dataset_module = get_dataset(template, model_args, data_args, training_args, stage="sft", **tokenizer_module) |
|
|
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train) |
|
|
|
|
|
if getattr(model, "is_quantized", False) and not training_args.do_train: |
|
|
setattr(model, "_hf_peft_config_loaded", True) |
|
|
|
|
|
data_collator = SFTDataCollatorWith4DAttentionMask( |
|
|
template=template, |
|
|
model=model if not training_args.predict_with_generate else None, |
|
|
pad_to_multiple_of=8 if training_args.do_train else None, |
|
|
label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id, |
|
|
block_diag_attn=model_args.block_diag_attn, |
|
|
attn_implementation=getattr(model.config, "_attn_implementation", None), |
|
|
compute_dtype=model_args.compute_dtype, |
|
|
**tokenizer_module, |
|
|
) |
|
|
|
|
|
|
|
|
metric_module = {} |
|
|
if training_args.predict_with_generate: |
|
|
metric_module["compute_metrics"] = ComputeSimilarity(tokenizer=tokenizer) |
|
|
elif finetuning_args.compute_accuracy: |
|
|
metric_module["compute_metrics"] = ComputeAccuracy() |
|
|
metric_module["preprocess_logits_for_metrics"] = eval_logit_processor |
|
|
|
|
|
|
|
|
gen_kwargs = generating_args.to_dict(obey_generation_config=True) |
|
|
gen_kwargs["eos_token_id"] = [tokenizer.eos_token_id] + tokenizer.additional_special_tokens_ids |
|
|
gen_kwargs["pad_token_id"] = tokenizer.pad_token_id |
|
|
|
|
|
|
|
|
trainer = CustomSeq2SeqTrainer( |
|
|
model=model, |
|
|
args=training_args, |
|
|
finetuning_args=finetuning_args, |
|
|
data_collator=data_collator, |
|
|
callbacks=callbacks, |
|
|
gen_kwargs=gen_kwargs, |
|
|
**dataset_module, |
|
|
**tokenizer_module, |
|
|
**metric_module, |
|
|
) |
|
|
|
|
|
|
|
|
if training_args.do_train: |
|
|
train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint) |
|
|
trainer.save_model() |
|
|
if finetuning_args.include_effective_tokens_per_second: |
|
|
train_result.metrics["effective_tokens_per_sec"] = calculate_tps( |
|
|
dataset_module["train_dataset"], train_result.metrics, stage="sft" |
|
|
) |
|
|
|
|
|
trainer.log_metrics("train", train_result.metrics) |
|
|
trainer.save_metrics("train", train_result.metrics) |
|
|
trainer.save_state() |
|
|
if trainer.is_world_process_zero() and finetuning_args.plot_loss: |
|
|
keys = ["loss"] |
|
|
if isinstance(dataset_module.get("eval_dataset"), dict): |
|
|
keys += sum( |
|
|
[[f"eval_{key}_loss", f"eval_{key}_accuracy"] for key in dataset_module["eval_dataset"].keys()], [] |
|
|
) |
|
|
else: |
|
|
keys += ["eval_loss", "eval_accuracy"] |
|
|
|
|
|
plot_loss(training_args.output_dir, keys=keys) |
|
|
|
|
|
if training_args.predict_with_generate: |
|
|
tokenizer.padding_side = "left" |
|
|
|
|
|
|
|
|
if training_args.do_eval: |
|
|
metrics = trainer.evaluate(metric_key_prefix="eval", **gen_kwargs) |
|
|
trainer.log_metrics("eval", metrics) |
|
|
trainer.save_metrics("eval", metrics) |
|
|
|
|
|
|
|
|
if training_args.do_predict: |
|
|
logger.warning_rank0_once("Batch generation can be very slow. Consider using `scripts/vllm_infer.py` instead.") |
|
|
predict_results = trainer.predict(dataset_module["eval_dataset"], metric_key_prefix="predict", **gen_kwargs) |
|
|
trainer.log_metrics("predict", predict_results.metrics) |
|
|
trainer.save_metrics("predict", predict_results.metrics) |
|
|
trainer.save_predictions(dataset_module["eval_dataset"], predict_results, generating_args.skip_special_tokens) |
|
|
|
|
|
|
|
|
create_modelcard_and_push(trainer, model_args, data_args, training_args, finetuning_args) |
|
|
|