import copy import logging import math from datetime import timedelta from typing import List, Optional, Sequence, Tuple, Union import numpy as np import torch from accelerate import Accelerator, DistributedType, InitProcessGroupKwargs from accelerate.state import AcceleratorState from decord import VideoReader, cpu from PIL import Image from tqdm import tqdm from transformers import AutoConfig from lmms_eval.api.instance import Instance from lmms_eval.api.model import lmms from lmms_eval.api.registry import register_model from lmms_eval.models.model_utils.load_video import read_video_pyav eval_logger = logging.getLogger("lmms-eval") import os import sys try: from oryx.constants import ( DEFAULT_IM_END_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX, ) from oryx.conversation import SeparatorStyle, conv_templates from oryx.mm_utils import ( KeywordsStoppingCriteria, get_model_name_from_path, process_anyres_highres_image_genli, process_anyres_video_genli, tokenizer_image_token, ) from oryx.model.builder import load_pretrained_model from oryx.model.language_model.oryx_llama import OryxConfig except ImportError: eval_logger.debug("Oryx is not installed. Please install Oryx to use this model.") try: from oryx.model.language_model.oryx_qwen import OryxQwenConfig AutoConfig.register("oryx_qwen", OryxQwenConfig) except: eval_logger.debug("") @register_model("oryx") class Oryx(lmms): def __init__( self, pretrained: str = "", truncation: Optional[bool] = True, device: Optional[str] = "cuda:0", batch_size: Optional[Union[int, str]] = 1, attn_implementation=( "sdpa" if torch.__version__ >= "2.1.2" else "eager" ), # inference implementation for attention, can be "sdpa", "eager", "flash_attention_2". Seems FA2 is not effective during inference: https://discuss.huggingface.co/t/flash-attention-has-no-effect-on-inference/73453/5 device_map="", conv_template="qwen_1_5", use_cache=True, truncate_context=False, max_frames_num: int = 32, mm_resampler_type: str = "spatial_pool", overwrite: bool = True, video_decode_backend: str = "decord", **kwargs, ) -> None: super().__init__() assert kwargs == {}, f"Unexpected kwargs: {kwargs}" accelerator_kwargs = InitProcessGroupKwargs(timeout=timedelta(weeks=52)) accelerator = Accelerator(kwargs_handlers=[accelerator_kwargs]) if accelerator.num_processes > 1: self._device = torch.device(f"cuda:{accelerator.local_process_index}") self.device_map = f"cuda:{accelerator.local_process_index}" elif accelerator.num_processes == 1 and device_map == "auto": self._device = torch.device(device) self.device_map = device_map else: self._device = torch.device(f"cuda:{accelerator.local_process_index}") self.device_map = f"cuda:{accelerator.local_process_index}" self.pretrained = pretrained self.model_name = get_model_name_from_path(pretrained) self.video_decode_backend = video_decode_backend # self._config = AutoConfig.from_pretrained(self.pretrained) self.overwrite = overwrite self.mm_resampler_type = mm_resampler_type self.max_frames_num = int(max_frames_num) if self.overwrite == True: overwrite_config = {} overwrite_config["mm_resampler_type"] = self.mm_resampler_type overwrite_config["patchify_video_feature"] = False overwrite_config["attn_implementation"] = attn_implementation cfg_pretrained = AutoConfig.from_pretrained(self.pretrained) self._tokenizer, self._model, self._image_processor, self._max_length = load_pretrained_model(pretrained, None, self.model_name, device_map=self.device_map, overwrite_config=overwrite_config) else: self._tokenizer, self._model, self._image_processor, self._max_length = load_pretrained_model( pretrained, None, self.model_name, device_map=self.device_map, ) self._config = self._model.config self.model.eval() self.model.tie_weights() self.truncation = truncation self.batch_size_per_gpu = int(batch_size) self.conv_template = conv_template self.use_cache = use_cache self.truncate_context = truncate_context if accelerator.num_processes > 1: assert accelerator.distributed_type in [DistributedType.FSDP, DistributedType.MULTI_GPU, DistributedType.DEEPSPEED], "Unsupported distributed type provided. Only DDP and FSDP are supported." # If you want to use DistributedType.DEEPSPEED, you have to run accelerate config before using the model # Also, you have to select zero stage 0 (equivalent to DDP) in order to make the prepare model works # I tried to set different parameters in the kwargs to let default zero 2 stage works, but it didn't work. if accelerator.distributed_type == DistributedType.DEEPSPEED: kwargs = { "train_micro_batch_size_per_gpu": self.batch_size_per_gpu, "train_batch_size": self.batch_size_per_gpu * accelerator.num_processes, } AcceleratorState().deepspeed_plugin.deepspeed_config_process(must_match=True, **kwargs) eval_logger.info("Detected that you are using DistributedType.DEEPSPEED. Make sure you run `accelerate config` and set zero stage to 0") if accelerator.distributed_type == DistributedType.FSDP or accelerator.distributed_type == DistributedType.DEEPSPEED: self._model = accelerator.prepare(self.model) else: self._model = accelerator.prepare_model(self.model, evaluation_mode=True) self.accelerator = accelerator if self.accelerator.is_local_main_process: eval_logger.info(f"Using {accelerator.num_processes} devices with data parallelism") self._rank = self.accelerator.local_process_index self._world_size = self.accelerator.num_processes elif accelerator.num_processes == 1 and device_map == "auto": eval_logger.info(f"Using {accelerator.num_processes} devices with tensor parallelism") self._rank = 0 self._world_size = 1 else: eval_logger.info(f"Using single device: {self._device}") self.model.to(self._device) self._rank = 0 self._world_size = 1 @property def config(self): # return the associated transformers.AutoConfig for the given pretrained model. return self._config @property def tokenizer(self): return self._tokenizer @property def model(self): # returns the model, unwrapping it if using Accelerate if hasattr(self, "accelerator"): return self.accelerator.unwrap_model(self._model) else: return self._model @property def eot_token_id(self): # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence* return self.tokenizer.eos_token_id @property def max_length(self): return self._max_length def pad_sequence(self, input_ids, batch_first, padding_value): if self.tokenizer.padding_side == "left": input_ids = [torch.flip(_input_ids, [0]) for _input_ids in input_ids] input_ids = torch.nn.utils.rnn.pad_sequence(input_ids, batch_first=batch_first, padding_value=padding_value) if self.tokenizer.padding_side == "left": input_ids = torch.flip(input_ids, [1]) return input_ids @property def batch_size(self): return self.batch_size_per_gpu @property def device(self): return self._device @property def rank(self): return self._rank @property def world_size(self): return self._world_size def tok_encode(self, string: str, left_truncate_len=None, add_special_tokens=None) -> List[int]: """ """ add_special_tokens = False if add_special_tokens is None else add_special_tokens encoding = self.tokenizer.encode(string, add_special_tokens=add_special_tokens) # left-truncate the encoded context to be at most `left_truncate_len` tokens long if left_truncate_len: encoding = encoding[-left_truncate_len:] return encoding def load_video(self, video_path, max_frames_num): vr = VideoReader(video_path, ctx=cpu(0)) total_frame_num = len(vr) fps = round(vr.get_avg_fps()) uniform_sampled_frames = np.linspace(0, total_frame_num - 1, max_frames_num, dtype=int) frame_idx = uniform_sampled_frames.tolist() modality = "video" spare_frames = vr.get_batch(frame_idx).asnumpy() return spare_frames, modality # (frames, height, width, channels) def tok_decode(self, tokens): return self.tokenizer.decode(tokens) def loglikelihood(self, requests: List[Instance]) -> List[Tuple[float, bool]]: res = [] pbar = tqdm(total=len(requests), disable=(self.rank != 0), desc="Model Responding") for contexts, doc_to_target, doc_to_visual, doc_id, task, split in [reg.args for reg in requests]: # encode, pad, and truncate contexts for this batch if type(doc_to_target) == str: continuation = doc_to_target else: continuation = doc_to_target(self.task_dict[task][split][doc_id]) visuals = [doc_to_visual(self.task_dict[task][split][doc_id])] visuals = self.flatten(visuals) videos = [] # video if type(visuals[0][0]) == str: for visual in visuals: video = self.load_video(visual, self.max_frames_num) video = self._image_processor.preprocess(video, return_tensors="pt")["pixel_values"].bfloat16().to(self.device) videos.append(video) task_type = "video" # image else: for visual in visuals: image_tensor_, image_highres_tensor_ = process_anyres_highres_image_genli(visual, self._image_processor) image_tensor.append(image_tensor_) image_highres_tensor.append(image_highres_tensor_) if all(x.shape == image_tensor[0].shape for x in image_tensor): image_tensor = torch.stack(image_tensor, dim=0) if all(x.shape == image_highres_tensor[0].shape for x in image_highres_tensor): image_highres_tensor = torch.stack(image_highres_tensor, dim=0) if type(image_tensor) is list: image_tensor = [_image.to(dtype=torch.bfloat16, device=self.device) for _image in image_tensor] else: image_tensor = image_tensor.to(dtype=torch.bfloat16, device=self.device) if type(image_highres_tensor) is list: image_highres_tensor = [_image.to(dtype=torch.bfloat16, device=self.device) for _image in image_highres_tensor] else: image_highres_tensor = image_highres_tensor.to(dtype=torch.bfloat16, device=self.device) image_sizes = [visuals[idx].size for idx in range(len(visuals))] task_type = "image" qs = contexts if self.model.config.mm_use_im_start_end: qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + "\n" + qs else: qs = DEFAULT_IMAGE_TOKEN + "\n" + qs conv = conv_templates[self.conv_template].copy() conv.append_message(conv.roles[0], qs) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() contxt_id = tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(self.device) conv = conv_templates[self.conv_template].copy() conv.append_message(conv.roles[0], qs) conv.append_message(conv.roles[1], continuation) prompt = conv.get_prompt() input_ids = tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(self.device) labels = input_ids.clone() # Context part no need to calculate for loss labels[0, : contxt_id.shape[1]] = -100 with torch.inference_mode(): if task_type == "video": outputs = self.model( input_ids=input_ids, labels=labels, modalities=["video"], images=videos, images_highres=videos, ) else: outputs = self.model( input_ids=input_ids, labels=labels, modalities=["image"] * len(image_sizes), images=image_tensor, images_highres=image_highres_tensor, image_sizes=image_sizes, ) loss = outputs["loss"] # loss = torch.exp(loss) logits = outputs["logits"] greedy_tokens = logits.argmax(dim=-1) cont_toks = input_ids[:, contxt_id.shape[1] :] # [1, seq] greedy_tokens = greedy_tokens[:, contxt_id.shape[1] : input_ids.shape[1]] # [1, seq] max_equal = (greedy_tokens == cont_toks).all() res.append((float(loss.item()), bool(max_equal))) pbar.update(1) pbar.close() return res def flatten(self, input): new_list = [] for i in input: for j in i: new_list.append(j) return new_list def generate_until(self, requests) -> List[str]: res = [] pbar = tqdm(total=len(requests), disable=(self.rank != 0), desc="Model Responding") for contexts, gen_kwargs, doc_to_visual, doc_id, task, split in [reg.args for reg in requests]: visuals = [doc_to_visual(self.task_dict[task][split][doc_id])] visuals = self.flatten(visuals) videos = [] modalities = [] try: if task == "mvbench_episodic_reasoning": sampled_frm = min(len(visuals), self.max_frames_num) indices = np.linspace(0, len(visuals) - 1, sampled_frm, dtype=int) frames = [visuals[i] for i in indices] video = np.stack([np.array(x) for x in frames]) modality = "video" frames = [] for frame in video: self._image_processor.do_resize = False self._image_processor.do_center_crop = False frames.append(process_anyres_video_genli(Image.fromarray(frame).convert("RGB"), self._image_processor)) video = torch.stack(frames, dim=0).bfloat16().to(self.device) videos.append(video) modalities.append(modality) else: if type(visuals[0][0]) == str: for visual in visuals: if self.video_decode_backend == "decord": video, modality = self.load_video(visual, self.max_frames_num) elif self.video_decode_backend == "pyav": video, modality = read_video_pyav(visual, num_frm=self.max_frames_num) # video = self.load_video(visual, self.max_frames_num) frames = [] for frame in video: self._image_processor.do_resize = False self._image_processor.do_center_crop = False frames.append(process_anyres_video_genli(Image.fromarray(frame).convert("RGB"), self._image_processor)) video = torch.stack(frames, dim=0).bfloat16().to(self.device) videos.append(video) modalities.append(modality) task_type = "video" else: self._image_processor.do_resize = False self._image_processor.do_center_crop = False image_tensor, image_highres_tensor = [], [] for visual in visuals: image_tensor_, image_highres_tensor_ = process_anyres_highres_image_genli(visual, self._image_processor) image_tensor.append(image_tensor_) image_highres_tensor.append(image_highres_tensor_) if all(x.shape == image_tensor[0].shape for x in image_tensor): image_tensor = torch.stack(image_tensor, dim=0) if all(x.shape == image_highres_tensor[0].shape for x in image_highres_tensor): image_highres_tensor = torch.stack(image_highres_tensor, dim=0) if type(image_tensor) is list: image_tensor = [_image.to(dtype=torch.bfloat16, device=self.device) for _image in image_tensor] else: image_tensor = image_tensor.to(dtype=torch.bfloat16, device=self.device) if type(image_highres_tensor) is list: image_highres_tensor = [_image.to(dtype=torch.bfloat16, device=self.device) for _image in image_highres_tensor] else: image_highres_tensor = image_highres_tensor.to(dtype=torch.bfloat16, device=self.device) task_type = "image" except Exception as e: eval_logger.info(f"{e}") eval_logger.info(f"Video {visuals} can not load, check the source") video_path = "\n".join(visuals) res.append(f"Video {video_path} can not load, check the source") pbar.update(1) continue qs = contexts if self.model.config.mm_use_im_start_end: qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + "\n" + qs else: qs = DEFAULT_IMAGE_TOKEN + "\n" + qs conv = conv_templates[self.conv_template].copy() conv.append_message(conv.roles[0], qs) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() input_ids = tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(self.device) pad_token_ids = self.tokenizer.pad_token_id if self.tokenizer.pad_token_id is not None else self.tokenizer.eos_token_id attention_masks = input_ids.ne(pad_token_ids).long().to(self.device) stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 keywords = [stop_str] stopping_criteria = KeywordsStoppingCriteria(keywords, self.tokenizer, input_ids) cur_prompt = contexts if task_type == "image": gen_kwargs["image_sizes"] = [visuals[idx].size for idx in range(len(visuals))] if "max_new_tokens" not in gen_kwargs: gen_kwargs["max_new_tokens"] = 1024 if "temperature" not in gen_kwargs: gen_kwargs["temperature"] = 0.2 if "top_p" not in gen_kwargs: gen_kwargs["top_p"] = None if "num_beams" not in gen_kwargs: gen_kwargs["num_beams"] = 1 try: with torch.inference_mode(): if task_type == "video": output_ids = self.model.generate( inputs=input_ids, images=videos, images_highres=videos, attention_mask=attention_masks, modalities=modalities, use_cache=self.use_cache, stopping_criteria=[stopping_criteria], do_sample=True if gen_kwargs["temperature"] > 0 else False, temperature=gen_kwargs["temperature"], top_p=gen_kwargs["top_p"], num_beams=gen_kwargs["num_beams"], max_new_tokens=gen_kwargs["max_new_tokens"], ) else: output_ids = self.model.generate( input_ids, attention_mask=attention_masks, pad_token_id=pad_token_ids, modalities=["image"] * len(gen_kwargs["image_sizes"]), images=image_tensor, images_highres=image_highres_tensor, image_sizes=gen_kwargs["image_sizes"], do_sample=True if gen_kwargs["temperature"] > 0 else False, temperature=gen_kwargs["temperature"], top_p=gen_kwargs["top_p"], num_beams=gen_kwargs["num_beams"], max_new_tokens=gen_kwargs["max_new_tokens"], use_cache=self.use_cache, ) outputs = self.tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() # print(outputs) res.append(outputs) pbar.update(1) except Exception as e: eval_logger.info(f"{e}") eval_logger.info(f"Video {visuals} generate failed, check the source") video_path = "\n".join(visuals) res.append(f"Video {video_path} generate failed, check the source") pbar.update(1) continue return res