import re import warnings from typing import List, Optional, Tuple, Union import librosa import numpy as np import PIL import torch from accelerate import Accelerator, DistributedType from accelerate.state import AcceleratorState from decord import VideoReader, cpu from PIL import Image from tqdm import tqdm from transformers import AutoConfig, AutoModelForCausalLM, AutoProcessor from lmms_eval import utils from lmms_eval.api.instance import Instance from lmms_eval.api.model import lmms from lmms_eval.api.registry import register_model from lmms_eval.models.model_utils.audio_processing import downsample_audio warnings.filterwarnings("ignore") from loguru import logger as eval_logger @register_model("phi4_multimodal") class Phi4(lmms): """ Llava Model for Hugging Face Transformers: https://huggingface.co/docs/transformers/v4.39.3/en/model_doc/llava Adapted from the InstructBLIP model in lmms_eval/models/instructblip.py Example usage: accelerate launch --num_processes=8 --main_process_port 12345 -m lmms_eval \ --model phi4_multimodal \ --model_args pretrained=microsoft/Phi-4-multimodal-instruct \ --tasks seedbench \ --batch_size 1 \ --output_path ./logs/ \ --log_samples """ def __init__( self, pretrained: str = "microsoft/Phi-4-multimodal-instruct", revision: str = "main", device: str = "cuda", dtype: Optional[Union[str, torch.dtype]] = "auto", batch_size: int = 1, trust_remote_code: Optional[bool] = True, attn_implementation: Optional[str] = None, device_map: str = "", chat_template: Optional[str] = None, use_cache: bool = True, max_frames_num: Optional[int] = 16, **kwargs, ) -> None: super().__init__() # Do not use kwargs for now assert kwargs == {}, f"Unexpected kwargs: {kwargs}" accelerator = Accelerator() if accelerator.num_processes > 1 and device_map == "": self._device = torch.device(f"cuda:{accelerator.local_process_index}") self.device_map = f"cuda:{accelerator.local_process_index}" else: self._device = torch.device(device) self.device_map = device_map if isinstance(dtype, str) and dtype != "auto": dtype = getattr(torch, dtype) self.max_frames_num = max_frames_num self._model = AutoModelForCausalLM.from_pretrained(pretrained, revision=revision, torch_dtype=dtype, device_map=self.device_map, trust_remote_code=trust_remote_code, attn_implementation=attn_implementation) self.pretrained = pretrained self._processor = AutoProcessor.from_pretrained(pretrained, revision=revision, trust_remote_code=trust_remote_code) # Pad from left for batched generation: https://huggingface.co/docs/transformers/v4.39.3/en/model_doc/llava#usage-tips self._processor.tokenizer.padding_side = "left" self._tokenizer = self._processor.tokenizer self._config = self._model.config self.batch_size_per_gpu = int(batch_size) self.chat_template = chat_template self.use_cache = use_cache if accelerator.num_processes > 1 and device_map == "": assert accelerator.distributed_type in [DistributedType.FSDP, DistributedType.MULTI_GPU, DistributedType.DEEPSPEED], "Unsupported distributed type provided. Only DDP and FSDP are supported." # If you want to use DistributedType.DEEPSPEED, you have to run accelerate config before using the model # Also, you have to select zero stage 0 (equivalent to DDP) in order to make the prepare model works # I tried to set different parameters in the kwargs to let default zero 2 stage works, but it didn't work. if accelerator.distributed_type == DistributedType.DEEPSPEED: kwargs = { "train_micro_batch_size_per_gpu": self.batch_size_per_gpu, "train_batch_size": self.batch_size_per_gpu * accelerator.num_processes, } AcceleratorState().deepspeed_plugin.deepspeed_config_process(must_match=True, **kwargs) eval_logger.info("Detected that you are using DistributedType.DEEPSPEED. Make sure you run `accelerate config` and set zero stage to 0") if accelerator.distributed_type == DistributedType.FSDP or accelerator.distributed_type == DistributedType.DEEPSPEED: self._model = accelerator.prepare(self.model) else: self._model = accelerator.prepare_model(self.model, evaluation_mode=True) self.accelerator = accelerator if self.accelerator.is_local_main_process: eval_logger.info(f"Using {accelerator.num_processes} devices with data parallelism") self._rank = self.accelerator.local_process_index self._world_size = self.accelerator.num_processes elif accelerator.num_processes == 1 and device_map == "auto": eval_logger.info(f"Using {accelerator.num_processes} devices with pipeline parallelism") self._rank = 0 self._world_size = 1 else: eval_logger.info(f"Using single device: {self._device}") self.model.to(self._device) self._rank = 0 self._world_size = 1 self.accelerator = accelerator @property def config(self): # return the associated transformers.AutoConfig for the given pretrained model. return self._config @property def tokenizer(self): return self._tokenizer @property def model(self): # returns the model, unwrapping it if using Accelerate if hasattr(self, "accelerator"): return self.accelerator.unwrap_model(self._model) else: return self._model @property def eot_token_id(self): # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence* return self.tokenizer.eos_token_id @property def max_length(self): return self._max_length @property def batch_size(self): return self.batch_size_per_gpu @property def device(self): return self._device @property def rank(self): return self._rank @property def world_size(self): return self._world_size def tok_encode(self, string: str, left_truncate_len=None, add_special_tokens=None) -> List[int]: """ """ add_special_tokens = False if add_special_tokens is None else add_special_tokens encoding = self.tokenizer.encode(string, add_special_tokens=add_special_tokens) # left-truncate the encoded context to be at most `left_truncate_len` tokens long if left_truncate_len: encoding = encoding[-left_truncate_len:] return encoding def tok_decode(self, tokens): return self.tokenizer.decode(tokens) def loglikelihood(self, requests: List[Instance]) -> List[Tuple[float, bool]]: raise NotImplementedError("TODO: Implement loglikelihood for Phi-4") def flatten(self, input): new_list = [] for i in input: for j in i: new_list.append(j) return new_list def load_video(self, video_path, max_frames_num): if type(video_path) == str: vr = VideoReader(video_path, ctx=cpu(0)) else: vr = VideoReader(video_path[0], ctx=cpu(0)) total_frame_num = len(vr) uniform_sampled_frames = np.linspace(0, total_frame_num - 1, max_frames_num, dtype=int) frame_idx = uniform_sampled_frames.tolist() spare_frames = vr.get_batch(frame_idx).asnumpy() return spare_frames # (frames, height, width, channels) def default_process(self, visuals, contexts): text = "<|user|>" images = [] audios = [] vision_start = 1 audio_start = 1 for visual in visuals: if isinstance(visual, str): frames = self.load_video(visual, self.max_frames_num) for image in frames: text += f"<|image_{vision_start}|>" images.append(Image.fromarray(np.uint8(image))) vision_start += 1 elif isinstance(visual, PIL.Image.Image): images.append(visual) text += f"<|image_{vision_start}|>" vision_start += 1 elif isinstance(visual, dict) and "array" in visual: audio = downsample_audio(visual["array"], visual["sampling_rate"], self._processor.audio_processor.sampling_rate) audio = [audio, self._processor.audio_processor.sampling_rate] audios.append(audio) text += f"<|audio_{audio_start}|>" audio_start += 1 text += f"{contexts[0]}<|end|><|assistant|>" if len(images) == 0: images = None if len(audios) == 0: audios = None return text, images, audios def process_av_odessy(self, visuals, context): text = "<|user|>" images = [] audios = [] vision_start = 1 audio_start = 1 # Split the media tag pattern = r"" matches = list(re.finditer(pattern, context)) result = [] if not matches: result = [context] else: last_match = 0 for match in matches: result.append(context[last_match : match.start()]) last_match = match.end() # Append the last part of the context result.append(context[matches[-1].end() :]) import filetype for idx, visual in enumerate(visuals): file_type = filetype.guess(visual) # Append at the front text += result[idx] if "audio" in file_type.mime: audio = librosa.load(visual, sr=self._processor.audio_processor.sampling_rate)[0] audio = [audio, self._processor.audio_processor.sampling_rate] audios.append(audio) text += f"<|audio_{audio_start}|>" audio_start += 1 elif "video" in file_type.mime: frames = self.load_video(visual, self.max_frames_num) for image in frames: text += f"<|image_{vision_start}|>" images.append(Image.fromarray(np.uint8(image))) vision_start += 1 elif "image" in file_type.mime: images.append(Image.open(visual)) text += f"<|image_{vision_start}|>" vision_start += 1 # Leave the last part of the context text += result[-1] text += "<|end|><|assistant|>" if len(images) == 0: images = None if len(audios) == 0: audios = None return text, images, audios def generate_until(self, requests: List[Instance]) -> List[str]: res = [] def _collate(x): # the negative sign on len(toks) sorts descending - this has a few advantages: # - time estimates will always be over not underestimates, which is more useful for planning # - to know the size of a batch when going through the list, you know the first one is always the batch # padded context length. this is useful to simplify the batching logic and more importantly to make # automatic adaptive batches much much easier to implement # - any OOMs will happen right away rather than near the end toks = self.tok_encode(x[0]) return -len(toks), x[0] # we group requests by their generation_kwargs, # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling # in the same batch. re_ords = utils.Collator([reg.args for reg in requests], _collate, grouping=True) chunks = re_ords.get_batched(n=self.batch_size, batch_fn=None) num_iters = len(requests) // self.batch_size if len(requests) % self.batch_size == 0 else len(requests) // self.batch_size + 1 pbar = tqdm(total=num_iters, disable=(self.rank != 0), desc="Model Responding") for chunk in chunks: contexts, all_gen_kwargs, doc_to_visual, doc_id, task, split = zip(*chunk) task = task[0] split = split[0] visuals = [doc_to_visual[0](self.task_dict[task][split][ids]) for ids in doc_id] visuals = self.flatten(visuals) if task == "av_odyssey": text, images, audios = self.process_av_odessy(visuals, contexts[0]) else: text, images, audios = self.default_process(visuals, contexts) inputs = self._processor(text=text, images=images, audios=audios, return_tensors="pt").to(self.device) # we assume all gen kwargs in the batch are the same # this is safe to assume because the `grouper` object ensures it. gen_kwargs = all_gen_kwargs[0] if self.accelerator.is_main_process and doc_id[0] % 100 == 0: eval_logger.debug(f"Prompt for doc ID {doc_id[0]}:\n\n{text}\n") if "max_new_tokens" not in gen_kwargs: gen_kwargs["max_new_tokens"] = 1024 if "temperature" not in gen_kwargs: gen_kwargs["temperature"] = 0 if "top_p" not in gen_kwargs: gen_kwargs["top_p"] = None if "num_beams" not in gen_kwargs: gen_kwargs["num_beams"] = 1 try: cont = self.model.generate( **inputs, do_sample=True if gen_kwargs["temperature"] > 0 else False, temperature=gen_kwargs["temperature"], top_p=gen_kwargs["top_p"], num_beams=gen_kwargs["num_beams"], max_new_tokens=gen_kwargs["max_new_tokens"], use_cache=self.use_cache, pad_token_id=self.eot_token_id, num_logits_to_keep=0, ) except Exception as e: eval_logger.error(f"Error generating text: {e}") cont = inputs["input_ids"] cont = cont[:, inputs["input_ids"].shape[-1] :] text_outputs = self._processor.batch_decode(cont, skip_special_tokens=True)[0] if self.accelerator.is_main_process and doc_id[0] % 100 == 0: eval_logger.debug(f"Generated text for doc ID {doc_id[0]}:\n\n{text_outputs}\n") res.append(text_outputs) self.cache_hook.add_partial("generate_until", (contexts[0], gen_kwargs), text_outputs) pbar.update(1) # reorder this group of results back to original unsorted form res = re_ords.get_original(res) pbar.close() return res def generate_until_multi_round(self, requests) -> List[str]: raise NotImplementedError("TODO: Implement multi-round generation for LLaVAHF")