|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """ NEW model configuration""" | 
					
						
						|  | from transformers.configuration_utils import PretrainedConfig | 
					
						
						|  | from transformers.utils import logging | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class NewConfig(PretrainedConfig): | 
					
						
						|  | r""" | 
					
						
						|  | This is the configuration class to store the configuration of a [`NewModel`] or a [`TFNewModel`]. It is used to | 
					
						
						|  | instantiate a NEW model according to the specified arguments, defining the model architecture. Instantiating a | 
					
						
						|  | configuration with the defaults will yield a similar configuration to that of the NEW | 
					
						
						|  | [izhx/new-base-en](https://huggingface.co/izhx/new-base-en) architecture. | 
					
						
						|  |  | 
					
						
						|  | Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | 
					
						
						|  | documentation from [`PretrainedConfig`] for more information. | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | vocab_size (`int`, *optional*, defaults to 30522): | 
					
						
						|  | Vocabulary size of the NEW model. Defines the number of different tokens that can be represented by the | 
					
						
						|  | `inputs_ids` passed when calling [`NewModel`] or [`TFNewModel`]. | 
					
						
						|  | hidden_size (`int`, *optional*, defaults to 768): | 
					
						
						|  | Dimensionality of the encoder layers and the pooler layer. | 
					
						
						|  | num_hidden_layers (`int`, *optional*, defaults to 12): | 
					
						
						|  | Number of hidden layers in the Transformer encoder. | 
					
						
						|  | num_attention_heads (`int`, *optional*, defaults to 12): | 
					
						
						|  | Number of attention heads for each attention layer in the Transformer encoder. | 
					
						
						|  | intermediate_size (`int`, *optional*, defaults to 3072): | 
					
						
						|  | Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. | 
					
						
						|  | hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): | 
					
						
						|  | The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | 
					
						
						|  | `"relu"`, `"silu"` and `"gelu_new"` are supported. | 
					
						
						|  | hidden_dropout_prob (`float`, *optional*, defaults to 0.1): | 
					
						
						|  | The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | 
					
						
						|  | attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): | 
					
						
						|  | The dropout ratio for the attention probabilities. | 
					
						
						|  | max_position_embeddings (`int`, *optional*, defaults to 512): | 
					
						
						|  | The maximum sequence length that this model might ever be used with. Typically set this to something large | 
					
						
						|  | just in case (e.g., 512 or 1024 or 2048). | 
					
						
						|  | type_vocab_size (`int`, *optional*, defaults to 2): | 
					
						
						|  | The vocabulary size of the `token_type_ids` passed when calling [`NewModel`] or [`TFNewModel`]. | 
					
						
						|  | initializer_range (`float`, *optional*, defaults to 0.02): | 
					
						
						|  | The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | 
					
						
						|  | layer_norm_eps (`float`, *optional*, defaults to 1e-12): | 
					
						
						|  | The epsilon used by the layer normalization layers. | 
					
						
						|  | position_embedding_type (`str`, *optional*, defaults to `"rope"`): | 
					
						
						|  | Type of position embedding. Choose one of `"absolute"`, `"rope"`. | 
					
						
						|  | rope_theta (`float`, *optional*, defaults to 10000.0): | 
					
						
						|  | The base period of the RoPE embeddings. | 
					
						
						|  | rope_scaling (`Dict`, *optional*): | 
					
						
						|  | Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling | 
					
						
						|  | strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is | 
					
						
						|  | `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update | 
					
						
						|  | `max_position_embeddings` to the expected new maximum. See the following thread for more information on how | 
					
						
						|  | these scaling strategies behave: | 
					
						
						|  | https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an | 
					
						
						|  | experimental feature, subject to breaking API changes in future versions. | 
					
						
						|  | classifier_dropout (`float`, *optional*): | 
					
						
						|  | The dropout ratio for the classification head. | 
					
						
						|  |  | 
					
						
						|  | Examples: | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | >>> from transformers import NewConfig, NewModel | 
					
						
						|  |  | 
					
						
						|  | >>> # Initializing a NEW izhx/new-base-en style configuration | 
					
						
						|  | >>> configuration = NewConfig() | 
					
						
						|  |  | 
					
						
						|  | >>> # Initializing a model (with random weights) from the izhx/new-base-en style configuration | 
					
						
						|  | >>> model = NewModel(configuration) | 
					
						
						|  |  | 
					
						
						|  | >>> # Accessing the model configuration | 
					
						
						|  | >>> configuration = model.config | 
					
						
						|  | ```""" | 
					
						
						|  |  | 
					
						
						|  | model_type = "new" | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | vocab_size=30528, | 
					
						
						|  | hidden_size=768, | 
					
						
						|  | num_hidden_layers=12, | 
					
						
						|  | num_attention_heads=12, | 
					
						
						|  | intermediate_size=3072, | 
					
						
						|  | hidden_act="gelu", | 
					
						
						|  | hidden_dropout_prob=0.1, | 
					
						
						|  | attention_probs_dropout_prob=0.0, | 
					
						
						|  | max_position_embeddings=2048, | 
					
						
						|  | type_vocab_size=1, | 
					
						
						|  | initializer_range=0.02, | 
					
						
						|  | layer_norm_type='layer_norm', | 
					
						
						|  | layer_norm_eps=1e-12, | 
					
						
						|  |  | 
					
						
						|  | position_embedding_type="rope", | 
					
						
						|  | rope_theta=10000.0, | 
					
						
						|  | rope_scaling=None, | 
					
						
						|  | classifier_dropout=None, | 
					
						
						|  | pack_qkv=True, | 
					
						
						|  | unpad_inputs=False, | 
					
						
						|  | use_memory_efficient_attention=False, | 
					
						
						|  | logn_attention_scale=False, | 
					
						
						|  | logn_attention_clip1=False, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__(**kwargs) | 
					
						
						|  |  | 
					
						
						|  | self.vocab_size = vocab_size | 
					
						
						|  | self.hidden_size = hidden_size | 
					
						
						|  | self.num_hidden_layers = num_hidden_layers | 
					
						
						|  | self.num_attention_heads = num_attention_heads | 
					
						
						|  | self.hidden_act = hidden_act | 
					
						
						|  | self.intermediate_size = intermediate_size | 
					
						
						|  | self.hidden_dropout_prob = hidden_dropout_prob | 
					
						
						|  | self.attention_probs_dropout_prob = attention_probs_dropout_prob | 
					
						
						|  | self.max_position_embeddings = max_position_embeddings | 
					
						
						|  | self.type_vocab_size = type_vocab_size | 
					
						
						|  | self.initializer_range = initializer_range | 
					
						
						|  | self.layer_norm_type = layer_norm_type | 
					
						
						|  | self.layer_norm_eps = layer_norm_eps | 
					
						
						|  | self.position_embedding_type = position_embedding_type | 
					
						
						|  | self.rope_theta = rope_theta | 
					
						
						|  | self.rope_scaling = rope_scaling | 
					
						
						|  | self.classifier_dropout = classifier_dropout | 
					
						
						|  |  | 
					
						
						|  | self.pack_qkv = pack_qkv | 
					
						
						|  | self.unpad_inputs = unpad_inputs | 
					
						
						|  | self.use_memory_efficient_attention = use_memory_efficient_attention | 
					
						
						|  | self.logn_attention_scale = logn_attention_scale | 
					
						
						|  | self.logn_attention_clip1 = logn_attention_clip1 | 
					
						
						|  |  |