jbloom
commited on
Commit
·
6e2625f
1
Parent(s):
e4d1b39
handle multiextension fits
Browse files- GBI-16-2D.py +484 -16
- splits/tiny_test.jsonl +1 -1
GBI-16-2D.py
CHANGED
@@ -2,15 +2,17 @@ import os
|
|
2 |
import random
|
3 |
from glob import glob
|
4 |
import json
|
5 |
-
from huggingface_hub import hf_hub_download
|
6 |
-
|
7 |
|
|
|
8 |
from astropy.io import fits
|
9 |
from astropy.coordinates import Angle
|
10 |
from astropy import units as u
|
|
|
|
|
|
|
11 |
import datasets
|
12 |
from datasets import DownloadManager
|
13 |
-
|
14 |
|
15 |
_DESCRIPTION = (
|
16 |
"""SBI-16-2D is a dataset which is part of the AstroCompress project. """
|
@@ -159,9 +161,12 @@ class GBI_16_2D(datasets.GeneratorBasedBuilder):
|
|
159 |
for idx, (filepath, item) in enumerate(zip(filepaths, data_metadata)):
|
160 |
task_instance_key = f"{self.config.name}-{split}-{idx}"
|
161 |
with fits.open(filepath, memmap=False) as hdul:
|
162 |
-
|
163 |
-
|
164 |
-
|
|
|
|
|
|
|
165 |
yield task_instance_key, {**{"image": image_data}, **item}
|
166 |
|
167 |
|
@@ -200,17 +205,30 @@ def make_split_jsonl_files(
|
|
200 |
with open(output_file, "w") as out_f:
|
201 |
for file in files:
|
202 |
print(file, flush=True, end="...")
|
|
|
203 |
with fits.open(file, memmap=False) as hdul:
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
item = {
|
215 |
"image_id": image_id,
|
216 |
"image": file,
|
@@ -226,3 +244,453 @@ def make_split_jsonl_files(
|
|
226 |
|
227 |
create_jsonl(train_files, "train")
|
228 |
create_jsonl(test_files, "test")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import random
|
3 |
from glob import glob
|
4 |
import json
|
|
|
|
|
5 |
|
6 |
+
import numpy as np
|
7 |
from astropy.io import fits
|
8 |
from astropy.coordinates import Angle
|
9 |
from astropy import units as u
|
10 |
+
from fsspec.core import url_to_fs
|
11 |
+
|
12 |
+
from huggingface_hub import hf_hub_download
|
13 |
import datasets
|
14 |
from datasets import DownloadManager
|
15 |
+
|
16 |
|
17 |
_DESCRIPTION = (
|
18 |
"""SBI-16-2D is a dataset which is part of the AstroCompress project. """
|
|
|
161 |
for idx, (filepath, item) in enumerate(zip(filepaths, data_metadata)):
|
162 |
task_instance_key = f"{self.config.name}-{split}-{idx}"
|
163 |
with fits.open(filepath, memmap=False) as hdul:
|
164 |
+
if len(hdul) > 1:
|
165 |
+
# multiextension ... paste together the amplifiers
|
166 |
+
data, _ = read_lris(filepath)
|
167 |
+
else:
|
168 |
+
data = hdul[0].data
|
169 |
+
image_data = data[:, :]
|
170 |
yield task_instance_key, {**{"image": image_data}, **item}
|
171 |
|
172 |
|
|
|
205 |
with open(output_file, "w") as out_f:
|
206 |
for file in files:
|
207 |
print(file, flush=True, end="...")
|
208 |
+
image_id = os.path.basename(file).split(".fits")[0]
|
209 |
with fits.open(file, memmap=False) as hdul:
|
210 |
+
if len(hdul) > 1:
|
211 |
+
# multiextension ... paste together
|
212 |
+
data, header = read_lris(file)
|
213 |
+
dim_1 = data.shape[0]
|
214 |
+
dim_2 = data.shape[1]
|
215 |
+
header = fits.header.Header(header)
|
216 |
+
else:
|
217 |
+
dim_1 = hdul[0].header.get("NAXIS1", 0)
|
218 |
+
dim_2 = hdul[0].header.get("NAXIS2", 0)
|
219 |
+
header = hdul[0].header
|
220 |
+
|
221 |
+
ras = header.get("RA", "0")
|
222 |
+
ra = float(
|
223 |
+
Angle(f"{ras} hours").to_string(unit=u.degree, decimal=True)
|
224 |
+
)
|
225 |
+
decs = header.get("DEC", "0")
|
226 |
+
dec = float(
|
227 |
+
Angle(f"{decs} degrees").to_string(unit=u.degree, decimal=True)
|
228 |
+
)
|
229 |
+
pixscale = header.get("CD1_2", 0.135)
|
230 |
+
rotation = header.get("ROTPOSN", 0.0)
|
231 |
+
exposure_time = header.get("TTIME", 0.0)
|
232 |
item = {
|
233 |
"image_id": image_id,
|
234 |
"image": file,
|
|
|
244 |
|
245 |
create_jsonl(train_files, "train")
|
246 |
create_jsonl(test_files, "test")
|
247 |
+
|
248 |
+
|
249 |
+
def read_lris(raw_file, det=None, TRIM=False):
|
250 |
+
"""
|
251 |
+
Modified from pypeit.spectrographs.keck_lris.read_lris -- Jon Brown, Josh Bloom
|
252 |
+
cf. https://github.com/KerryPaterson/Imaging_pipelines
|
253 |
+
|
254 |
+
Read a raw LRIS data frame (one or more detectors)
|
255 |
+
Packed in a multi-extension HDU
|
256 |
+
Based on readmhdufits.pro
|
257 |
+
|
258 |
+
Parameters
|
259 |
+
----------
|
260 |
+
raw_file : str
|
261 |
+
Filename
|
262 |
+
det : int, optional
|
263 |
+
Detector number; Default = both
|
264 |
+
TRIM : bool, optional
|
265 |
+
Trim the image?
|
266 |
+
|
267 |
+
Returns
|
268 |
+
-------
|
269 |
+
array : ndarray
|
270 |
+
Combined image
|
271 |
+
header : FITS header
|
272 |
+
sections : list
|
273 |
+
List of datasec, oscansec, ampsec sections
|
274 |
+
"""
|
275 |
+
|
276 |
+
hdu = fits.open(raw_file)
|
277 |
+
head0 = hdu[0].header
|
278 |
+
|
279 |
+
# Get post, pre-pix values
|
280 |
+
precol = head0["PRECOL"]
|
281 |
+
postpix = head0["POSTPIX"]
|
282 |
+
preline = head0["PRELINE"]
|
283 |
+
postline = head0["POSTLINE"]
|
284 |
+
|
285 |
+
# get the detector
|
286 |
+
# this just checks if its the blue one and assumes red if not
|
287 |
+
# note the red fits headers don't even have this keyword???
|
288 |
+
if head0["INSTRUME"] == "LRISBLUE":
|
289 |
+
redchip = False
|
290 |
+
else:
|
291 |
+
redchip = True
|
292 |
+
|
293 |
+
# Setup for datasec, oscansec
|
294 |
+
dsec = []
|
295 |
+
osec = []
|
296 |
+
nxdata_sum = 0
|
297 |
+
|
298 |
+
# get the x and y binning factors...
|
299 |
+
binning = head0["BINNING"]
|
300 |
+
xbin, ybin = [int(ibin) for ibin in binning.split(",")]
|
301 |
+
|
302 |
+
# First read over the header info to determine the size of the output array...
|
303 |
+
n_ext = len(hdu) - 1 # Number of extensions (usually 4)
|
304 |
+
xcol = []
|
305 |
+
xmax = 0
|
306 |
+
ymax = 0
|
307 |
+
xmin = 10000
|
308 |
+
ymin = 10000
|
309 |
+
for i in np.arange(1, n_ext + 1):
|
310 |
+
theader = hdu[i].header
|
311 |
+
detsec = theader["DETSEC"]
|
312 |
+
if detsec != "0":
|
313 |
+
# parse the DETSEC keyword to determine the size of the array.
|
314 |
+
x1, x2, y1, y2 = np.array(load_sections(detsec, fmt_iraf=False)).flatten()
|
315 |
+
|
316 |
+
# find the range of detector space occupied by the data
|
317 |
+
# [xmin:xmax,ymin:ymax]
|
318 |
+
xt = max(x2, x1)
|
319 |
+
xmax = max(xt, xmax)
|
320 |
+
yt = max(y2, y1)
|
321 |
+
ymax = max(yt, ymax)
|
322 |
+
|
323 |
+
# find the min size of the array
|
324 |
+
xt = min(x1, x2)
|
325 |
+
xmin = min(xmin, xt)
|
326 |
+
yt = min(y1, y2)
|
327 |
+
ymin = min(ymin, yt)
|
328 |
+
# Save
|
329 |
+
xcol.append(xt)
|
330 |
+
|
331 |
+
# determine the output array size...
|
332 |
+
nx = xmax - xmin + 1
|
333 |
+
ny = ymax - ymin + 1
|
334 |
+
|
335 |
+
# change size for binning...
|
336 |
+
nx = nx // xbin
|
337 |
+
ny = ny // ybin
|
338 |
+
|
339 |
+
# Update PRECOL and POSTPIX
|
340 |
+
precol = precol // xbin
|
341 |
+
postpix = postpix // xbin
|
342 |
+
|
343 |
+
# Deal with detectors
|
344 |
+
if det in [1, 2]:
|
345 |
+
nx = nx // 2
|
346 |
+
n_ext = n_ext // 2
|
347 |
+
det_idx = np.arange(n_ext, dtype=np.int) + (det - 1) * n_ext
|
348 |
+
elif det is None:
|
349 |
+
det_idx = np.arange(n_ext).astype(int)
|
350 |
+
else:
|
351 |
+
raise ValueError("Bad value for det")
|
352 |
+
|
353 |
+
# change size for pre/postscan...
|
354 |
+
if not TRIM:
|
355 |
+
nx += n_ext * (precol + postpix)
|
356 |
+
ny += preline + postline
|
357 |
+
|
358 |
+
# allocate output array...
|
359 |
+
array = np.zeros((nx, ny), dtype="uint16")
|
360 |
+
gain_array = np.zeros((nx, ny), dtype="uint16")
|
361 |
+
order = np.argsort(np.array(xcol))
|
362 |
+
|
363 |
+
# insert extensions into master image...
|
364 |
+
for kk, i in enumerate(order[det_idx]):
|
365 |
+
|
366 |
+
# grab complete extension...
|
367 |
+
data, gaindata, predata, postdata, x1, y1 = lris_read_amp(
|
368 |
+
hdu, i + 1, redchip=redchip
|
369 |
+
)
|
370 |
+
|
371 |
+
# insert components into output array...
|
372 |
+
if not TRIM:
|
373 |
+
# insert predata...
|
374 |
+
buf = predata.shape
|
375 |
+
nxpre = buf[0]
|
376 |
+
xs = kk * precol
|
377 |
+
xe = xs + nxpre
|
378 |
+
|
379 |
+
array[xs:xe, :] = predata
|
380 |
+
gain_array[xs:xe, :] = predata
|
381 |
+
|
382 |
+
# insert data...
|
383 |
+
buf = data.shape
|
384 |
+
nxdata = buf[0]
|
385 |
+
nydata = buf[1]
|
386 |
+
|
387 |
+
# JB: have to track the number of xpixels
|
388 |
+
xs = n_ext * precol + nxdata_sum
|
389 |
+
xe = xs + nxdata
|
390 |
+
|
391 |
+
# now log how many pixels that was
|
392 |
+
nxdata_sum += nxdata
|
393 |
+
|
394 |
+
# Data section
|
395 |
+
# section = '[{:d}:{:d},{:d}:{:d}]'.format(preline,nydata-postline, xs, xe) # Eliminate lines
|
396 |
+
section = "[{:d}:{:d},{:d}:{:d}]".format(
|
397 |
+
preline, nydata, xs, xe
|
398 |
+
) # DONT eliminate lines
|
399 |
+
|
400 |
+
dsec.append(section)
|
401 |
+
array[xs:xe, :] = data # Include postlines
|
402 |
+
gain_array[xs:xe, :] = gaindata # Include postlines
|
403 |
+
|
404 |
+
# ; insert postdata...
|
405 |
+
buf = postdata.shape
|
406 |
+
nxpost = buf[0]
|
407 |
+
xs = nx - n_ext * postpix + kk * postpix
|
408 |
+
xe = xs + nxpost
|
409 |
+
section = "[:,{:d}:{:d}]".format(xs, xe)
|
410 |
+
osec.append(section)
|
411 |
+
|
412 |
+
array[xs:xe, :] = postdata
|
413 |
+
gain_array[xs:xe, :] = postdata
|
414 |
+
|
415 |
+
else:
|
416 |
+
buf = data.shape
|
417 |
+
nxdata = buf[0]
|
418 |
+
nydata = buf[1]
|
419 |
+
|
420 |
+
xs = (x1 - xmin) // xbin
|
421 |
+
xe = xs + nxdata
|
422 |
+
ys = (y1 - ymin) // ybin
|
423 |
+
ye = ys + nydata - postline
|
424 |
+
|
425 |
+
yin1 = preline
|
426 |
+
yin2 = nydata - postline
|
427 |
+
|
428 |
+
array[xs:xe, ys:ye] = data[:, yin1:yin2]
|
429 |
+
gain_array[xs:xe, ys:ye] = gaindata[:, yin1:yin2]
|
430 |
+
|
431 |
+
# make sure BZERO is a valid integer for IRAF
|
432 |
+
obzero = head0["BZERO"]
|
433 |
+
head0["O_BZERO"] = obzero
|
434 |
+
head0["BZERO"] = 32768 - obzero
|
435 |
+
|
436 |
+
# Return, transposing array back to goofy Python indexing
|
437 |
+
return array.T, head0
|
438 |
+
|
439 |
+
|
440 |
+
def lris_read_amp(inp, ext, redchip=False, applygain=True):
|
441 |
+
"""
|
442 |
+
Modified from pypeit.spectrographs.keck_lris.lris_read_amp -- Jon Brown, Josh Bloom
|
443 |
+
cf. https://github.com/KerryPaterson/Imaging_pipelines
|
444 |
+
Read one amplifier of an LRIS multi-extension FITS image
|
445 |
+
|
446 |
+
Parameters
|
447 |
+
----------
|
448 |
+
inp: tuple
|
449 |
+
(str,int) filename, extension
|
450 |
+
(hdu,int) FITS hdu, extension
|
451 |
+
|
452 |
+
Returns
|
453 |
+
-------
|
454 |
+
data
|
455 |
+
predata
|
456 |
+
postdata
|
457 |
+
x1
|
458 |
+
y1
|
459 |
+
|
460 |
+
;------------------------------------------------------------------------
|
461 |
+
function lris_read_amp, filename, ext, $
|
462 |
+
linebias=linebias, nobias=nobias, $
|
463 |
+
predata=predata, postdata=postdata, header=header, $
|
464 |
+
x1=x1, x2=x2, y1=y1, y2=y2, GAINDATA=gaindata
|
465 |
+
;------------------------------------------------------------------------
|
466 |
+
; Read one amp from LRIS mHDU image
|
467 |
+
;------------------------------------------------------------------------
|
468 |
+
"""
|
469 |
+
# Parse input
|
470 |
+
if isinstance(inp, str):
|
471 |
+
hdu = fits.open(inp)
|
472 |
+
else:
|
473 |
+
hdu = inp
|
474 |
+
|
475 |
+
# Get the pre and post pix values
|
476 |
+
# for LRIS red POSTLINE = 20, POSTPIX = 80, PRELINE = 0, PRECOL = 12
|
477 |
+
head0 = hdu[0].header
|
478 |
+
precol = head0["precol"]
|
479 |
+
postpix = head0["postpix"]
|
480 |
+
|
481 |
+
# Deal with binning
|
482 |
+
binning = head0["BINNING"]
|
483 |
+
xbin, ybin = [int(ibin) for ibin in binning.split(",")]
|
484 |
+
precol = precol // xbin
|
485 |
+
postpix = postpix // xbin
|
486 |
+
|
487 |
+
# get entire extension...
|
488 |
+
temp = hdu[ext].data.transpose() # Silly Python nrow,ncol formatting
|
489 |
+
tsize = temp.shape
|
490 |
+
nxt = tsize[0]
|
491 |
+
|
492 |
+
# parse the DETSEC keyword to determine the size of the array.
|
493 |
+
header = hdu[ext].header
|
494 |
+
detsec = header["DETSEC"]
|
495 |
+
x1, x2, y1, y2 = np.array(load_sections(detsec, fmt_iraf=False)).flatten()
|
496 |
+
|
497 |
+
# parse the DATASEC keyword to determine the size of the science region (unbinned)
|
498 |
+
datasec = header["DATASEC"]
|
499 |
+
xdata1, xdata2, ydata1, ydata2 = np.array(
|
500 |
+
load_sections(datasec, fmt_iraf=False)
|
501 |
+
).flatten()
|
502 |
+
|
503 |
+
# grab the components...
|
504 |
+
predata = temp[0:precol, :]
|
505 |
+
# datasec appears to have the x value for the keywords that are zero
|
506 |
+
# based. This is only true in the image header extensions
|
507 |
+
# not true in the main header. They also appear inconsistent between
|
508 |
+
# LRISr and LRISb!
|
509 |
+
# data = temp[xdata1-1:xdata2-1,*]
|
510 |
+
# data = temp[xdata1:xdata2+1, :]
|
511 |
+
|
512 |
+
# JB: LRIS-R is windowed differently, so the default pypeit checks fail
|
513 |
+
# xshape is calculated from datasec.
|
514 |
+
# For blue, its 1024,
|
515 |
+
# For red, the chip dimensions are different AND the observations are windowed
|
516 |
+
# In windowed mode each amplifier has differently sized data sections
|
517 |
+
if not redchip:
|
518 |
+
xshape = 1024 // xbin # blue
|
519 |
+
else:
|
520 |
+
xshape = xdata2 - xdata1 + 1 // xbin # red
|
521 |
+
|
522 |
+
# do some sanity checks
|
523 |
+
if (xdata1 - 1) != precol:
|
524 |
+
# msgs.error("Something wrong in LRIS datasec or precol")
|
525 |
+
errStr = "Something wrong in LRIS datasec or precol"
|
526 |
+
print(errStr)
|
527 |
+
|
528 |
+
if (xshape + precol + postpix) != temp.shape[0]:
|
529 |
+
# msgs.error("Wrong size for in LRIS detector somewhere. Funny binning?")
|
530 |
+
errStr = "Wrong size for in LRIS detector somewhere. Funny binning?"
|
531 |
+
print(errStr)
|
532 |
+
|
533 |
+
data = temp[precol : precol + xshape, :]
|
534 |
+
postdata = temp[nxt - postpix : nxt, :]
|
535 |
+
|
536 |
+
# flip in X as needed...
|
537 |
+
if x1 > x2:
|
538 |
+
xt = x2
|
539 |
+
x2 = x1
|
540 |
+
x1 = xt
|
541 |
+
data = np.flipud(data) # reverse(temporary(data),1)
|
542 |
+
|
543 |
+
# flip in Y as needed...
|
544 |
+
if y1 > y2:
|
545 |
+
yt = y2
|
546 |
+
y2 = y1
|
547 |
+
y1 = yt
|
548 |
+
data = np.fliplr(data)
|
549 |
+
predata = np.fliplr(predata)
|
550 |
+
postdata = np.fliplr(postdata)
|
551 |
+
|
552 |
+
|
553 |
+
# dummy gain data since we're keeping as uint16
|
554 |
+
gaindata = 0.0 * data + 1.0
|
555 |
+
|
556 |
+
return data, gaindata, predata, postdata, x1, y1
|
557 |
+
|
558 |
+
|
559 |
+
def load_sections(string, fmt_iraf=True):
|
560 |
+
"""
|
561 |
+
Modified from pypit.core.parse.load_sections -- Jon Brown, Josh Bloom
|
562 |
+
cf. https://github.com/KerryPaterson/Imaging_pipelines
|
563 |
+
From the input string, return the coordinate sections
|
564 |
+
|
565 |
+
Parameters
|
566 |
+
----------
|
567 |
+
string : str
|
568 |
+
character string of the form [x1:x2,y1:y2]
|
569 |
+
x1 = left pixel
|
570 |
+
x2 = right pixel
|
571 |
+
y1 = bottom pixel
|
572 |
+
y2 = top pixel
|
573 |
+
fmt_iraf : bool
|
574 |
+
Is the variable string in IRAF format (True) or
|
575 |
+
python format (False)
|
576 |
+
|
577 |
+
Returns
|
578 |
+
-------
|
579 |
+
sections : list (or None)
|
580 |
+
the detector sections
|
581 |
+
"""
|
582 |
+
xyrng = string.strip("[]()").split(",")
|
583 |
+
if xyrng[0] == ":":
|
584 |
+
xyarrx = [0, 0]
|
585 |
+
else:
|
586 |
+
xyarrx = xyrng[0].split(":")
|
587 |
+
# If a lower/upper limit on the array slicing is not given (e.g. [:100] has no lower index specified),
|
588 |
+
# set the lower/upper limit to be the first/last index.
|
589 |
+
if len(xyarrx[0]) == 0:
|
590 |
+
xyarrx[0] = 0
|
591 |
+
if len(xyarrx[1]) == 0:
|
592 |
+
xyarrx[1] = -1
|
593 |
+
if xyrng[1] == ":":
|
594 |
+
xyarry = [0, 0]
|
595 |
+
else:
|
596 |
+
xyarry = xyrng[1].split(":")
|
597 |
+
# If a lower/upper limit on the array slicing is not given (e.g. [5:] has no upper index specified),
|
598 |
+
# set the lower/upper limit to be the first/last index.
|
599 |
+
if len(xyarry[0]) == 0:
|
600 |
+
xyarry[0] = 0
|
601 |
+
if len(xyarry[1]) == 0:
|
602 |
+
xyarry[1] = -1
|
603 |
+
if fmt_iraf:
|
604 |
+
xmin = max(0, int(xyarry[0]) - 1)
|
605 |
+
xmax = int(xyarry[1])
|
606 |
+
ymin = max(0, int(xyarrx[0]) - 1)
|
607 |
+
ymax = int(xyarrx[1])
|
608 |
+
else:
|
609 |
+
xmin = max(0, int(xyarrx[0]))
|
610 |
+
xmax = int(xyarrx[1])
|
611 |
+
ymin = max(0, int(xyarry[0]))
|
612 |
+
ymax = int(xyarry[1])
|
613 |
+
return [[xmin, xmax], [ymin, ymax]]
|
614 |
+
|
615 |
+
|
616 |
+
def sec2slice(
|
617 |
+
subarray, one_indexed=False, include_end=False, require_dim=None, transpose=False
|
618 |
+
):
|
619 |
+
"""
|
620 |
+
Modified from pypit.core.parse.sec2slice -- Jon Brown
|
621 |
+
|
622 |
+
Convert a string representation of an array subsection (slice) into
|
623 |
+
a list of slice objects.
|
624 |
+
|
625 |
+
Args:
|
626 |
+
subarray (str):
|
627 |
+
The string to convert. Should have the form of normal slice
|
628 |
+
operation, 'start:stop:step'. The parser ignores whether or
|
629 |
+
not the string has the brackets '[]', but the string must
|
630 |
+
contain the appropriate ':' and ',' characters.
|
631 |
+
one_indexed (:obj:`bool`, optional):
|
632 |
+
The string should be interpreted as 1-indexed. Default
|
633 |
+
is to assume python indexing.
|
634 |
+
include_end (:obj:`bool`, optional):
|
635 |
+
**If** the end is defined, adjust the slice such that
|
636 |
+
the last element is included. Default is to exclude the
|
637 |
+
last element as with normal python slicing.
|
638 |
+
require_dim (:obj:`int`, optional):
|
639 |
+
Test if the string indicates the slice along the proper
|
640 |
+
number of dimensions.
|
641 |
+
transpose (:obj:`bool`, optional):
|
642 |
+
Transpose the order of the returned slices. The
|
643 |
+
following are equivalent::
|
644 |
+
|
645 |
+
tslices = parse_sec2slice('[:10,10:]')[::-1]
|
646 |
+
tslices = parse_sec2slice('[:10,10:]', transpose=True)
|
647 |
+
|
648 |
+
Returns:
|
649 |
+
tuple: A tuple of slice objects, one per dimension of the
|
650 |
+
prospective array.
|
651 |
+
|
652 |
+
Raises:
|
653 |
+
TypeError:
|
654 |
+
Raised if the input `subarray` is not a string.
|
655 |
+
ValueError:
|
656 |
+
Raised if the string does not match the required
|
657 |
+
dimensionality or if the string does not look like a
|
658 |
+
slice.
|
659 |
+
"""
|
660 |
+
# Check it's a string
|
661 |
+
if not isinstance(subarray, (str, bytes)):
|
662 |
+
raise TypeError("Can only parse string-based subarray sections.")
|
663 |
+
# Remove brackets if they're included
|
664 |
+
sections = subarray.strip("[]").split(",")
|
665 |
+
# Check the dimensionality
|
666 |
+
ndim = len(sections)
|
667 |
+
if require_dim is not None and ndim != require_dim:
|
668 |
+
raise ValueError(
|
669 |
+
"Number of slices ({0}) in {1} does not match ".format(ndim, subarray)
|
670 |
+
+ "required dimensions ({0}).".format(require_dim)
|
671 |
+
)
|
672 |
+
# Convert the slice of each dimension from a string to a slice
|
673 |
+
# object
|
674 |
+
slices = []
|
675 |
+
for s in sections:
|
676 |
+
# Must be able to find the colon
|
677 |
+
if ":" not in s:
|
678 |
+
raise ValueError("Unrecognized slice string: {0}".format(s))
|
679 |
+
# Initial conversion
|
680 |
+
_s = [None if x == "" else int(x) for x in s.split(":")]
|
681 |
+
if len(_s) > 3:
|
682 |
+
raise ValueError(
|
683 |
+
"String as too many sections. Must have format 'start:stop:step'."
|
684 |
+
)
|
685 |
+
if len(_s) < 3:
|
686 |
+
# Include step
|
687 |
+
_s += [None]
|
688 |
+
if one_indexed:
|
689 |
+
# Decrement to convert from 1- to 0-indexing
|
690 |
+
_s = [None if x is None else x - 1 for x in _s]
|
691 |
+
if include_end and _s[1] is not None:
|
692 |
+
# Increment to include last
|
693 |
+
_s[1] += 1
|
694 |
+
# Append the new slice
|
695 |
+
slices += [slice(*_s)]
|
696 |
+
return tuple(slices[::-1] if transpose else slices)
|
splits/tiny_test.jsonl
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"image_id": "LR.20100708.41739", "image": "./data/LR.20100708.41739.fits", "ra": 264.942, "dec": 27.3245, "pixscale": 0.135, "rotation_angle": -89.9999583, "dim_1":
|
|
|
1 |
+
{"image_id": "LR.20100708.41739", "image": "./data/LR.20100708.41739.fits", "ra": 264.942, "dec": 27.3245, "pixscale": 0.135, "rotation_angle": -89.9999583, "dim_1": 2520, "dim_2": 3768, "exposure_time": 270}
|