jbloom commited on
Commit
6e2625f
·
1 Parent(s): e4d1b39

handle multiextension fits

Browse files
Files changed (2) hide show
  1. GBI-16-2D.py +484 -16
  2. splits/tiny_test.jsonl +1 -1
GBI-16-2D.py CHANGED
@@ -2,15 +2,17 @@ import os
2
  import random
3
  from glob import glob
4
  import json
5
- from huggingface_hub import hf_hub_download
6
-
7
 
 
8
  from astropy.io import fits
9
  from astropy.coordinates import Angle
10
  from astropy import units as u
 
 
 
11
  import datasets
12
  from datasets import DownloadManager
13
- from fsspec.core import url_to_fs
14
 
15
  _DESCRIPTION = (
16
  """SBI-16-2D is a dataset which is part of the AstroCompress project. """
@@ -159,9 +161,12 @@ class GBI_16_2D(datasets.GeneratorBasedBuilder):
159
  for idx, (filepath, item) in enumerate(zip(filepaths, data_metadata)):
160
  task_instance_key = f"{self.config.name}-{split}-{idx}"
161
  with fits.open(filepath, memmap=False) as hdul:
162
- # the first axis is length one, so we take the first element
163
- # the second axis is the time axis and varies between images
164
- image_data = hdul[0].data[:, :].tolist()
 
 
 
165
  yield task_instance_key, {**{"image": image_data}, **item}
166
 
167
 
@@ -200,17 +205,30 @@ def make_split_jsonl_files(
200
  with open(output_file, "w") as out_f:
201
  for file in files:
202
  print(file, flush=True, end="...")
 
203
  with fits.open(file, memmap=False) as hdul:
204
- image_id = os.path.basename(file).split(".fits")[0]
205
- ras = hdul[0].header.get("RA", "0")
206
- ra = float(Angle(f'{ras} hours').to_string(unit=u.degree, decimal=True))
207
- decs = hdul[0].header.get("DEC", "0")
208
- dec = float(Angle(f'{decs} degrees').to_string(unit=u.degree, decimal=True))
209
- pixscale = hdul[0].header.get("CD1_2", 0.135)
210
- rotation = hdul[0].header.get("ROTPOSN", 0.0)
211
- dim_1 = hdul[0].header.get("NAXIS1", 0)
212
- dim_2 = hdul[0].header.get("NAXIS2", 0)
213
- exposure_time = hdul[0].header.get("TTIME", 0.0)
 
 
 
 
 
 
 
 
 
 
 
 
214
  item = {
215
  "image_id": image_id,
216
  "image": file,
@@ -226,3 +244,453 @@ def make_split_jsonl_files(
226
 
227
  create_jsonl(train_files, "train")
228
  create_jsonl(test_files, "test")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  import random
3
  from glob import glob
4
  import json
 
 
5
 
6
+ import numpy as np
7
  from astropy.io import fits
8
  from astropy.coordinates import Angle
9
  from astropy import units as u
10
+ from fsspec.core import url_to_fs
11
+
12
+ from huggingface_hub import hf_hub_download
13
  import datasets
14
  from datasets import DownloadManager
15
+
16
 
17
  _DESCRIPTION = (
18
  """SBI-16-2D is a dataset which is part of the AstroCompress project. """
 
161
  for idx, (filepath, item) in enumerate(zip(filepaths, data_metadata)):
162
  task_instance_key = f"{self.config.name}-{split}-{idx}"
163
  with fits.open(filepath, memmap=False) as hdul:
164
+ if len(hdul) > 1:
165
+ # multiextension ... paste together the amplifiers
166
+ data, _ = read_lris(filepath)
167
+ else:
168
+ data = hdul[0].data
169
+ image_data = data[:, :]
170
  yield task_instance_key, {**{"image": image_data}, **item}
171
 
172
 
 
205
  with open(output_file, "w") as out_f:
206
  for file in files:
207
  print(file, flush=True, end="...")
208
+ image_id = os.path.basename(file).split(".fits")[0]
209
  with fits.open(file, memmap=False) as hdul:
210
+ if len(hdul) > 1:
211
+ # multiextension ... paste together
212
+ data, header = read_lris(file)
213
+ dim_1 = data.shape[0]
214
+ dim_2 = data.shape[1]
215
+ header = fits.header.Header(header)
216
+ else:
217
+ dim_1 = hdul[0].header.get("NAXIS1", 0)
218
+ dim_2 = hdul[0].header.get("NAXIS2", 0)
219
+ header = hdul[0].header
220
+
221
+ ras = header.get("RA", "0")
222
+ ra = float(
223
+ Angle(f"{ras} hours").to_string(unit=u.degree, decimal=True)
224
+ )
225
+ decs = header.get("DEC", "0")
226
+ dec = float(
227
+ Angle(f"{decs} degrees").to_string(unit=u.degree, decimal=True)
228
+ )
229
+ pixscale = header.get("CD1_2", 0.135)
230
+ rotation = header.get("ROTPOSN", 0.0)
231
+ exposure_time = header.get("TTIME", 0.0)
232
  item = {
233
  "image_id": image_id,
234
  "image": file,
 
244
 
245
  create_jsonl(train_files, "train")
246
  create_jsonl(test_files, "test")
247
+
248
+
249
+ def read_lris(raw_file, det=None, TRIM=False):
250
+ """
251
+ Modified from pypeit.spectrographs.keck_lris.read_lris -- Jon Brown, Josh Bloom
252
+ cf. https://github.com/KerryPaterson/Imaging_pipelines
253
+
254
+ Read a raw LRIS data frame (one or more detectors)
255
+ Packed in a multi-extension HDU
256
+ Based on readmhdufits.pro
257
+
258
+ Parameters
259
+ ----------
260
+ raw_file : str
261
+ Filename
262
+ det : int, optional
263
+ Detector number; Default = both
264
+ TRIM : bool, optional
265
+ Trim the image?
266
+
267
+ Returns
268
+ -------
269
+ array : ndarray
270
+ Combined image
271
+ header : FITS header
272
+ sections : list
273
+ List of datasec, oscansec, ampsec sections
274
+ """
275
+
276
+ hdu = fits.open(raw_file)
277
+ head0 = hdu[0].header
278
+
279
+ # Get post, pre-pix values
280
+ precol = head0["PRECOL"]
281
+ postpix = head0["POSTPIX"]
282
+ preline = head0["PRELINE"]
283
+ postline = head0["POSTLINE"]
284
+
285
+ # get the detector
286
+ # this just checks if its the blue one and assumes red if not
287
+ # note the red fits headers don't even have this keyword???
288
+ if head0["INSTRUME"] == "LRISBLUE":
289
+ redchip = False
290
+ else:
291
+ redchip = True
292
+
293
+ # Setup for datasec, oscansec
294
+ dsec = []
295
+ osec = []
296
+ nxdata_sum = 0
297
+
298
+ # get the x and y binning factors...
299
+ binning = head0["BINNING"]
300
+ xbin, ybin = [int(ibin) for ibin in binning.split(",")]
301
+
302
+ # First read over the header info to determine the size of the output array...
303
+ n_ext = len(hdu) - 1 # Number of extensions (usually 4)
304
+ xcol = []
305
+ xmax = 0
306
+ ymax = 0
307
+ xmin = 10000
308
+ ymin = 10000
309
+ for i in np.arange(1, n_ext + 1):
310
+ theader = hdu[i].header
311
+ detsec = theader["DETSEC"]
312
+ if detsec != "0":
313
+ # parse the DETSEC keyword to determine the size of the array.
314
+ x1, x2, y1, y2 = np.array(load_sections(detsec, fmt_iraf=False)).flatten()
315
+
316
+ # find the range of detector space occupied by the data
317
+ # [xmin:xmax,ymin:ymax]
318
+ xt = max(x2, x1)
319
+ xmax = max(xt, xmax)
320
+ yt = max(y2, y1)
321
+ ymax = max(yt, ymax)
322
+
323
+ # find the min size of the array
324
+ xt = min(x1, x2)
325
+ xmin = min(xmin, xt)
326
+ yt = min(y1, y2)
327
+ ymin = min(ymin, yt)
328
+ # Save
329
+ xcol.append(xt)
330
+
331
+ # determine the output array size...
332
+ nx = xmax - xmin + 1
333
+ ny = ymax - ymin + 1
334
+
335
+ # change size for binning...
336
+ nx = nx // xbin
337
+ ny = ny // ybin
338
+
339
+ # Update PRECOL and POSTPIX
340
+ precol = precol // xbin
341
+ postpix = postpix // xbin
342
+
343
+ # Deal with detectors
344
+ if det in [1, 2]:
345
+ nx = nx // 2
346
+ n_ext = n_ext // 2
347
+ det_idx = np.arange(n_ext, dtype=np.int) + (det - 1) * n_ext
348
+ elif det is None:
349
+ det_idx = np.arange(n_ext).astype(int)
350
+ else:
351
+ raise ValueError("Bad value for det")
352
+
353
+ # change size for pre/postscan...
354
+ if not TRIM:
355
+ nx += n_ext * (precol + postpix)
356
+ ny += preline + postline
357
+
358
+ # allocate output array...
359
+ array = np.zeros((nx, ny), dtype="uint16")
360
+ gain_array = np.zeros((nx, ny), dtype="uint16")
361
+ order = np.argsort(np.array(xcol))
362
+
363
+ # insert extensions into master image...
364
+ for kk, i in enumerate(order[det_idx]):
365
+
366
+ # grab complete extension...
367
+ data, gaindata, predata, postdata, x1, y1 = lris_read_amp(
368
+ hdu, i + 1, redchip=redchip
369
+ )
370
+
371
+ # insert components into output array...
372
+ if not TRIM:
373
+ # insert predata...
374
+ buf = predata.shape
375
+ nxpre = buf[0]
376
+ xs = kk * precol
377
+ xe = xs + nxpre
378
+
379
+ array[xs:xe, :] = predata
380
+ gain_array[xs:xe, :] = predata
381
+
382
+ # insert data...
383
+ buf = data.shape
384
+ nxdata = buf[0]
385
+ nydata = buf[1]
386
+
387
+ # JB: have to track the number of xpixels
388
+ xs = n_ext * precol + nxdata_sum
389
+ xe = xs + nxdata
390
+
391
+ # now log how many pixels that was
392
+ nxdata_sum += nxdata
393
+
394
+ # Data section
395
+ # section = '[{:d}:{:d},{:d}:{:d}]'.format(preline,nydata-postline, xs, xe) # Eliminate lines
396
+ section = "[{:d}:{:d},{:d}:{:d}]".format(
397
+ preline, nydata, xs, xe
398
+ ) # DONT eliminate lines
399
+
400
+ dsec.append(section)
401
+ array[xs:xe, :] = data # Include postlines
402
+ gain_array[xs:xe, :] = gaindata # Include postlines
403
+
404
+ # ; insert postdata...
405
+ buf = postdata.shape
406
+ nxpost = buf[0]
407
+ xs = nx - n_ext * postpix + kk * postpix
408
+ xe = xs + nxpost
409
+ section = "[:,{:d}:{:d}]".format(xs, xe)
410
+ osec.append(section)
411
+
412
+ array[xs:xe, :] = postdata
413
+ gain_array[xs:xe, :] = postdata
414
+
415
+ else:
416
+ buf = data.shape
417
+ nxdata = buf[0]
418
+ nydata = buf[1]
419
+
420
+ xs = (x1 - xmin) // xbin
421
+ xe = xs + nxdata
422
+ ys = (y1 - ymin) // ybin
423
+ ye = ys + nydata - postline
424
+
425
+ yin1 = preline
426
+ yin2 = nydata - postline
427
+
428
+ array[xs:xe, ys:ye] = data[:, yin1:yin2]
429
+ gain_array[xs:xe, ys:ye] = gaindata[:, yin1:yin2]
430
+
431
+ # make sure BZERO is a valid integer for IRAF
432
+ obzero = head0["BZERO"]
433
+ head0["O_BZERO"] = obzero
434
+ head0["BZERO"] = 32768 - obzero
435
+
436
+ # Return, transposing array back to goofy Python indexing
437
+ return array.T, head0
438
+
439
+
440
+ def lris_read_amp(inp, ext, redchip=False, applygain=True):
441
+ """
442
+ Modified from pypeit.spectrographs.keck_lris.lris_read_amp -- Jon Brown, Josh Bloom
443
+ cf. https://github.com/KerryPaterson/Imaging_pipelines
444
+ Read one amplifier of an LRIS multi-extension FITS image
445
+
446
+ Parameters
447
+ ----------
448
+ inp: tuple
449
+ (str,int) filename, extension
450
+ (hdu,int) FITS hdu, extension
451
+
452
+ Returns
453
+ -------
454
+ data
455
+ predata
456
+ postdata
457
+ x1
458
+ y1
459
+
460
+ ;------------------------------------------------------------------------
461
+ function lris_read_amp, filename, ext, $
462
+ linebias=linebias, nobias=nobias, $
463
+ predata=predata, postdata=postdata, header=header, $
464
+ x1=x1, x2=x2, y1=y1, y2=y2, GAINDATA=gaindata
465
+ ;------------------------------------------------------------------------
466
+ ; Read one amp from LRIS mHDU image
467
+ ;------------------------------------------------------------------------
468
+ """
469
+ # Parse input
470
+ if isinstance(inp, str):
471
+ hdu = fits.open(inp)
472
+ else:
473
+ hdu = inp
474
+
475
+ # Get the pre and post pix values
476
+ # for LRIS red POSTLINE = 20, POSTPIX = 80, PRELINE = 0, PRECOL = 12
477
+ head0 = hdu[0].header
478
+ precol = head0["precol"]
479
+ postpix = head0["postpix"]
480
+
481
+ # Deal with binning
482
+ binning = head0["BINNING"]
483
+ xbin, ybin = [int(ibin) for ibin in binning.split(",")]
484
+ precol = precol // xbin
485
+ postpix = postpix // xbin
486
+
487
+ # get entire extension...
488
+ temp = hdu[ext].data.transpose() # Silly Python nrow,ncol formatting
489
+ tsize = temp.shape
490
+ nxt = tsize[0]
491
+
492
+ # parse the DETSEC keyword to determine the size of the array.
493
+ header = hdu[ext].header
494
+ detsec = header["DETSEC"]
495
+ x1, x2, y1, y2 = np.array(load_sections(detsec, fmt_iraf=False)).flatten()
496
+
497
+ # parse the DATASEC keyword to determine the size of the science region (unbinned)
498
+ datasec = header["DATASEC"]
499
+ xdata1, xdata2, ydata1, ydata2 = np.array(
500
+ load_sections(datasec, fmt_iraf=False)
501
+ ).flatten()
502
+
503
+ # grab the components...
504
+ predata = temp[0:precol, :]
505
+ # datasec appears to have the x value for the keywords that are zero
506
+ # based. This is only true in the image header extensions
507
+ # not true in the main header. They also appear inconsistent between
508
+ # LRISr and LRISb!
509
+ # data = temp[xdata1-1:xdata2-1,*]
510
+ # data = temp[xdata1:xdata2+1, :]
511
+
512
+ # JB: LRIS-R is windowed differently, so the default pypeit checks fail
513
+ # xshape is calculated from datasec.
514
+ # For blue, its 1024,
515
+ # For red, the chip dimensions are different AND the observations are windowed
516
+ # In windowed mode each amplifier has differently sized data sections
517
+ if not redchip:
518
+ xshape = 1024 // xbin # blue
519
+ else:
520
+ xshape = xdata2 - xdata1 + 1 // xbin # red
521
+
522
+ # do some sanity checks
523
+ if (xdata1 - 1) != precol:
524
+ # msgs.error("Something wrong in LRIS datasec or precol")
525
+ errStr = "Something wrong in LRIS datasec or precol"
526
+ print(errStr)
527
+
528
+ if (xshape + precol + postpix) != temp.shape[0]:
529
+ # msgs.error("Wrong size for in LRIS detector somewhere. Funny binning?")
530
+ errStr = "Wrong size for in LRIS detector somewhere. Funny binning?"
531
+ print(errStr)
532
+
533
+ data = temp[precol : precol + xshape, :]
534
+ postdata = temp[nxt - postpix : nxt, :]
535
+
536
+ # flip in X as needed...
537
+ if x1 > x2:
538
+ xt = x2
539
+ x2 = x1
540
+ x1 = xt
541
+ data = np.flipud(data) # reverse(temporary(data),1)
542
+
543
+ # flip in Y as needed...
544
+ if y1 > y2:
545
+ yt = y2
546
+ y2 = y1
547
+ y1 = yt
548
+ data = np.fliplr(data)
549
+ predata = np.fliplr(predata)
550
+ postdata = np.fliplr(postdata)
551
+
552
+
553
+ # dummy gain data since we're keeping as uint16
554
+ gaindata = 0.0 * data + 1.0
555
+
556
+ return data, gaindata, predata, postdata, x1, y1
557
+
558
+
559
+ def load_sections(string, fmt_iraf=True):
560
+ """
561
+ Modified from pypit.core.parse.load_sections -- Jon Brown, Josh Bloom
562
+ cf. https://github.com/KerryPaterson/Imaging_pipelines
563
+ From the input string, return the coordinate sections
564
+
565
+ Parameters
566
+ ----------
567
+ string : str
568
+ character string of the form [x1:x2,y1:y2]
569
+ x1 = left pixel
570
+ x2 = right pixel
571
+ y1 = bottom pixel
572
+ y2 = top pixel
573
+ fmt_iraf : bool
574
+ Is the variable string in IRAF format (True) or
575
+ python format (False)
576
+
577
+ Returns
578
+ -------
579
+ sections : list (or None)
580
+ the detector sections
581
+ """
582
+ xyrng = string.strip("[]()").split(",")
583
+ if xyrng[0] == ":":
584
+ xyarrx = [0, 0]
585
+ else:
586
+ xyarrx = xyrng[0].split(":")
587
+ # If a lower/upper limit on the array slicing is not given (e.g. [:100] has no lower index specified),
588
+ # set the lower/upper limit to be the first/last index.
589
+ if len(xyarrx[0]) == 0:
590
+ xyarrx[0] = 0
591
+ if len(xyarrx[1]) == 0:
592
+ xyarrx[1] = -1
593
+ if xyrng[1] == ":":
594
+ xyarry = [0, 0]
595
+ else:
596
+ xyarry = xyrng[1].split(":")
597
+ # If a lower/upper limit on the array slicing is not given (e.g. [5:] has no upper index specified),
598
+ # set the lower/upper limit to be the first/last index.
599
+ if len(xyarry[0]) == 0:
600
+ xyarry[0] = 0
601
+ if len(xyarry[1]) == 0:
602
+ xyarry[1] = -1
603
+ if fmt_iraf:
604
+ xmin = max(0, int(xyarry[0]) - 1)
605
+ xmax = int(xyarry[1])
606
+ ymin = max(0, int(xyarrx[0]) - 1)
607
+ ymax = int(xyarrx[1])
608
+ else:
609
+ xmin = max(0, int(xyarrx[0]))
610
+ xmax = int(xyarrx[1])
611
+ ymin = max(0, int(xyarry[0]))
612
+ ymax = int(xyarry[1])
613
+ return [[xmin, xmax], [ymin, ymax]]
614
+
615
+
616
+ def sec2slice(
617
+ subarray, one_indexed=False, include_end=False, require_dim=None, transpose=False
618
+ ):
619
+ """
620
+ Modified from pypit.core.parse.sec2slice -- Jon Brown
621
+
622
+ Convert a string representation of an array subsection (slice) into
623
+ a list of slice objects.
624
+
625
+ Args:
626
+ subarray (str):
627
+ The string to convert. Should have the form of normal slice
628
+ operation, 'start:stop:step'. The parser ignores whether or
629
+ not the string has the brackets '[]', but the string must
630
+ contain the appropriate ':' and ',' characters.
631
+ one_indexed (:obj:`bool`, optional):
632
+ The string should be interpreted as 1-indexed. Default
633
+ is to assume python indexing.
634
+ include_end (:obj:`bool`, optional):
635
+ **If** the end is defined, adjust the slice such that
636
+ the last element is included. Default is to exclude the
637
+ last element as with normal python slicing.
638
+ require_dim (:obj:`int`, optional):
639
+ Test if the string indicates the slice along the proper
640
+ number of dimensions.
641
+ transpose (:obj:`bool`, optional):
642
+ Transpose the order of the returned slices. The
643
+ following are equivalent::
644
+
645
+ tslices = parse_sec2slice('[:10,10:]')[::-1]
646
+ tslices = parse_sec2slice('[:10,10:]', transpose=True)
647
+
648
+ Returns:
649
+ tuple: A tuple of slice objects, one per dimension of the
650
+ prospective array.
651
+
652
+ Raises:
653
+ TypeError:
654
+ Raised if the input `subarray` is not a string.
655
+ ValueError:
656
+ Raised if the string does not match the required
657
+ dimensionality or if the string does not look like a
658
+ slice.
659
+ """
660
+ # Check it's a string
661
+ if not isinstance(subarray, (str, bytes)):
662
+ raise TypeError("Can only parse string-based subarray sections.")
663
+ # Remove brackets if they're included
664
+ sections = subarray.strip("[]").split(",")
665
+ # Check the dimensionality
666
+ ndim = len(sections)
667
+ if require_dim is not None and ndim != require_dim:
668
+ raise ValueError(
669
+ "Number of slices ({0}) in {1} does not match ".format(ndim, subarray)
670
+ + "required dimensions ({0}).".format(require_dim)
671
+ )
672
+ # Convert the slice of each dimension from a string to a slice
673
+ # object
674
+ slices = []
675
+ for s in sections:
676
+ # Must be able to find the colon
677
+ if ":" not in s:
678
+ raise ValueError("Unrecognized slice string: {0}".format(s))
679
+ # Initial conversion
680
+ _s = [None if x == "" else int(x) for x in s.split(":")]
681
+ if len(_s) > 3:
682
+ raise ValueError(
683
+ "String as too many sections. Must have format 'start:stop:step'."
684
+ )
685
+ if len(_s) < 3:
686
+ # Include step
687
+ _s += [None]
688
+ if one_indexed:
689
+ # Decrement to convert from 1- to 0-indexing
690
+ _s = [None if x is None else x - 1 for x in _s]
691
+ if include_end and _s[1] is not None:
692
+ # Increment to include last
693
+ _s[1] += 1
694
+ # Append the new slice
695
+ slices += [slice(*_s)]
696
+ return tuple(slices[::-1] if transpose else slices)
splits/tiny_test.jsonl CHANGED
@@ -1 +1 @@
1
- {"image_id": "LR.20100708.41739", "image": "./data/LR.20100708.41739.fits", "ra": 264.942, "dec": 27.3245, "pixscale": 0.135, "rotation_angle": -89.9999583, "dim_1": 0, "dim_2": 0, "exposure_time": 270}
 
1
+ {"image_id": "LR.20100708.41739", "image": "./data/LR.20100708.41739.fits", "ra": 264.942, "dec": 27.3245, "pixscale": 0.135, "rotation_angle": -89.9999583, "dim_1": 2520, "dim_2": 3768, "exposure_time": 270}