File size: 7,426 Bytes
289df1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a5d3a0
 
289df1b
aa38a2d
289df1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1e98f2
289df1b
 
 
1547ad8
 
 
 
 
 
 
 
 
 
289df1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import os
import random
from glob import glob
import json
from huggingface_hub import hf_hub_download


from astropy.io import fits
import datasets
from datasets import DownloadManager
from fsspec.core import url_to_fs

_DESCRIPTION = """
SBI-16-2D is a dataset which is part of the AstroCompress project. 
It contains imaging data assembled from the Hubble Space Telescope (HST).
"""

_HOMEPAGE = "https://google.github.io/AstroCompress"

_LICENSE = "CC BY 4.0"

_URL = "https://huggingface.co/datasets/AstroCompress/SBI-16-2D/resolve/main/"

_URLS = {
    "tiny": {
        "train": "./splits/tiny_train.jsonl",
        "test": "./splits/tiny_test.jsonl",
    },
    "full": {
        "train": "./splits/full_train.jsonl",
        "test": "./splits/full_test.jsonl",
    },
}

_REPO_ID = "AstroCompress/SBI-16-2D"


class SBI_16_2D(datasets.GeneratorBasedBuilder):
    """SBI-16-2D Dataset"""

    VERSION = datasets.Version("1.0.1")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="tiny",
            version=VERSION,
            description="A small subset of the data, to test downsteam workflows.",
        ),
        datasets.BuilderConfig(
            name="full",
            version=VERSION,
            description="The full dataset",
        ),
    ]

    DEFAULT_CONFIG_NAME = "tiny"

    def __init__(self, **kwargs):
        super().__init__(version=self.VERSION, **kwargs)

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "image": datasets.Image(decode=True, mode="I;16"),
                    "ra": datasets.Value("float64"),
                    "dec": datasets.Value("float64"),
                    "pixscale": datasets.Value("float64"),
                    "image_id": datasets.Value("string"),
                }
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation="TBD",
        )

    def _split_generators(self, dl_manager: DownloadManager):

        ret = []
        base_path = dl_manager._base_path
        locally_run = not base_path.startswith(datasets.config.HF_ENDPOINT)
        _, path = url_to_fs(base_path)

        for split in ["train", "test"]:
            if locally_run:
                split_file_location = os.path.normpath(
                    os.path.join(path, _URLS[self.config.name][split])
                )
                split_file = dl_manager.download_and_extract(split_file_location)
            else:
                split_file = hf_hub_download(
                    repo_id=_REPO_ID,
                    filename=_URLS[self.config.name][split],
                    repo_type="dataset",
                )
            with open(split_file, encoding="utf-8") as f:
                data_filenames = []
                data_metadata = []
                for line in f:
                    item = json.loads(line)
                    data_filenames.append(item["image"])
                    data_metadata.append(
                        {
                            "ra": item["ra"],
                            "dec": item["dec"],
                            "pixscale": item["pixscale"],
                            "image_id": item["image_id"],
                        }
                    )
                if locally_run:
                    data_urls = [
                        os.path.normpath(os.path.join(path, data_filename))
                        for data_filename in data_filenames
                    ]
                    data_files = [
                        dl_manager.download(data_url) for data_url in data_urls
                    ]
                else:
                    data_urls = data_filenames
                    data_files = [
                        hf_hub_download(
                            repo_id=_REPO_ID, filename=data_url, repo_type="dataset"
                        )
                        for data_url in data_urls
                    ]
            ret.append(
                datasets.SplitGenerator(
                    name=(
                        datasets.Split.TRAIN
                        if split == "train"
                        else datasets.Split.TEST
                    ),
                    gen_kwargs={
                        "filepaths": data_files,
                        "split_file": split_file,
                        "split": split,
                        "data_metadata": data_metadata,
                    },
                ),
            )
        return ret

    def _generate_examples(self, filepaths, split_file, split, data_metadata):
        """Generate SBI-16-2D examples"""

        for idx, (filepath, item) in enumerate(zip(filepaths, data_metadata)):
            with fits.open(filepath, memmap=False) as hdul:
                # Process image data from HDU index 1
                image_data_1 = hdul[1].data[:, :].tolist()
                task_instance_key_1 = f"{self.config.name}-{split}-{idx}-HDU1"
                yield task_instance_key_1, {**{"image": image_data_1}, **item}
    
                # Process image data from HDU index 4
                image_data_4 = hdul[4].data[:, :].tolist()
                task_instance_key_4 = f"{self.config.name}-{split}-{idx}-HDU4"
                yield task_instance_key_4, {**{"image": image_data_4}, **item}



def make_split_jsonl_files(
    config_type="tiny", data_dir="./data", outdir="./splits", seed=42
):
    """
    Create jsonl files for the SBI-16-2D dataset.

    config_type: str, default="tiny"
        The type of split to create. Options are "tiny" and "full".
    data_dir: str, default="./data"
        The directory where the FITS files are located.
    outdir: str, default="./splits"
        The directory where the jsonl files will be created.
    seed: int, default=42
        The seed for the random split.
    """
    random.seed(seed)
    os.makedirs(outdir, exist_ok=True)

    fits_files = glob(os.path.join(data_dir, "*.fits"))
    random.shuffle(fits_files)
    if config_type == "tiny":
        train_files = fits_files[:2]
        test_files = fits_files[2:3]
    elif config_type == "full":
        split_idx = int(0.8 * len(fits_files))
        train_files = fits_files[:split_idx]
        test_files = fits_files[split_idx:]
    else:
        raise ValueError("Unsupported config_type. Use 'tiny' or 'full'.")

    def create_jsonl(files, split_name):
        output_file = os.path.join(outdir, f"{config_type}_{split_name}.jsonl")
        with open(output_file, "w") as out_f:
            for file in files:
                print(file, flush=True, end="...")
                with fits.open(file, memmap=False) as hdul:
                    image_id = os.path.basename(file).split(".fits")[0]
                    ra = hdul["SCI"].header.get("CRVAL1", 0)
                    dec = hdul["SCI"].header.get("CRVAL2", 0)
                    pixscale = hdul["SCI"].header.get("CD1_2", 0.396)
                    item = {
                        "image_id": image_id,
                        "image": file,
                        "ra": ra,
                        "dec": dec,
                        "pixscale": pixscale,
                    }
                    out_f.write(json.dumps(item) + "\n")

    create_jsonl(train_files, "train")
    create_jsonl(test_files, "test")