| 
							 | 
						""" | 
					
					
						
						| 
							 | 
						Runs several baseline compression algorithms and stores results for each FITS file in a csv. | 
					
					
						
						| 
							 | 
						This code is written functionality-only and cleaning it up is a TODO. | 
					
					
						
						| 
							 | 
						""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import os | 
					
					
						
						| 
							 | 
						import re | 
					
					
						
						| 
							 | 
						from pathlib import Path | 
					
					
						
						| 
							 | 
						import argparse | 
					
					
						
						| 
							 | 
						import os.path | 
					
					
						
						| 
							 | 
						from astropy.io import fits | 
					
					
						
						| 
							 | 
						import numpy as np | 
					
					
						
						| 
							 | 
						from time import time | 
					
					
						
						| 
							 | 
						import pandas as pd | 
					
					
						
						| 
							 | 
						from tqdm import tqdm | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						from astropy.io.fits import CompImageHDU | 
					
					
						
						| 
							 | 
						from imagecodecs import ( | 
					
					
						
						| 
							 | 
						    jpeg2k_encode,  | 
					
					
						
						| 
							 | 
						    jpeg2k_decode,  | 
					
					
						
						| 
							 | 
						    jpegls_encode,  | 
					
					
						
						| 
							 | 
						    jpegls_decode,  | 
					
					
						
						| 
							 | 
						    jpegxl_encode, | 
					
					
						
						| 
							 | 
						    jpegxl_decode, | 
					
					
						
						| 
							 | 
						    rcomp_encode, | 
					
					
						
						| 
							 | 
						    rcomp_decode, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						jpegxl_encode_max_effort_preset = lambda x: jpegxl_encode(x, lossless=True, effort=9) | 
					
					
						
						| 
							 | 
						jpegxl_encode_preset = lambda x: jpegxl_encode(x, lossless=True) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def find_matching_files(): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Returns list of test set file paths. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    df = pd.read_json("./splits/full_test.jsonl", lines=True) | 
					
					
						
						| 
							 | 
						    return list(df['image']) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def benchmark_imagecodecs_compression_algos(arr, compression_type): | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    encoder, decoder = ALL_CODECS[compression_type] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    write_start_time = time() | 
					
					
						
						| 
							 | 
						    encoded = encoder(arr) | 
					
					
						
						| 
							 | 
						    write_time = time() - write_start_time | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    read_start_time = time() | 
					
					
						
						| 
							 | 
						    if compression_type == "RICE": | 
					
					
						
						| 
							 | 
						        decoded = decoder(encoded, shape=arr.shape, dtype=np.uint16) | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						        decoded = decoder(encoded) | 
					
					
						
						| 
							 | 
						    read_time = time() - read_start_time | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    assert np.array_equal(arr, decoded) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    buflength = len(encoded) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    return {compression_type + "_BPD": buflength / arr.size, | 
					
					
						
						| 
							 | 
						            compression_type + "_WRITE_RUNTIME": write_time, | 
					
					
						
						| 
							 | 
						            compression_type + "_READ_RUNTIME": read_time, | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						           } | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def main(dim): | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    save_path = f"baseline_results_{dim}.csv" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    file_paths = find_matching_files() | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    if os.path.isfile(save_path): | 
					
					
						
						| 
							 | 
						        df = pd.read_csv(save_path) | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						        pass | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    print(f"Number of files to be tested: {len(file_paths)}") | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    ct = 0 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    for path in tqdm(file_paths): | 
					
					
						
						| 
							 | 
						        for hdu_idx in [1, 4]: | 
					
					
						
						| 
							 | 
						            df_idx = path + f"_hdu{hdu_idx}" | 
					
					
						
						| 
							 | 
						            if df_idx in df[df.columns[0]].values: | 
					
					
						
						| 
							 | 
						                continue | 
					
					
						
						| 
							 | 
						            with fits.open(path) as hdul: | 
					
					
						
						| 
							 | 
						                if dim == '2d': | 
					
					
						
						| 
							 | 
						                    arr = hdul[hdu_idx].data | 
					
					
						
						| 
							 | 
						                else: | 
					
					
						
						| 
							 | 
						                    raise RuntimeError(f"{dim} not applicable.") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            ct += 1 | 
					
					
						
						| 
							 | 
						            if ct % 10 == 0: | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                df.to_csv(save_path) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            for algo in ALL_CODECS.keys(): | 
					
					
						
						| 
							 | 
						                try: | 
					
					
						
						| 
							 | 
						                    if algo == "JPEG_2K" and dim != '2d': | 
					
					
						
						| 
							 | 
						                        test_results = benchmark_imagecodecs_compression_algos(arr.transpose(1, 2, 0), algo) | 
					
					
						
						| 
							 | 
						                    else: | 
					
					
						
						| 
							 | 
						                        test_results = benchmark_imagecodecs_compression_algos(arr, algo) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                    for column, value in test_results.items(): | 
					
					
						
						| 
							 | 
						                        if column in df.columns: | 
					
					
						
						| 
							 | 
						                            df.at[df_idx, column] = value | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                except Exception as e: | 
					
					
						
						| 
							 | 
						                    print(f"Failed at {path} under exception {e}.") | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            df.to_csv(save_path) | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						if __name__ == "__main__": | 
					
					
						
						| 
							 | 
						    parser = argparse.ArgumentParser(description="Process some 2D or 3D data.") | 
					
					
						
						| 
							 | 
						    parser.add_argument( | 
					
					
						
						| 
							 | 
						        "dimension",  | 
					
					
						
						| 
							 | 
						        choices=['2d'], | 
					
					
						
						| 
							 | 
						        help="Specify whether the data is 2d, or; not applicable here: 3dt (3d time dimension), or 3dw (3d wavelength dimension)." | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    args = parser.parse_args() | 
					
					
						
						| 
							 | 
						    dim = args.dimension.lower() | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    ALL_CODECS = { | 
					
					
						
						| 
							 | 
						        "JPEG_XL_MAX_EFFORT": [jpegxl_encode_max_effort_preset, jpegxl_decode], | 
					
					
						
						| 
							 | 
						        "JPEG_XL": [jpegxl_encode_preset, jpegxl_decode], | 
					
					
						
						| 
							 | 
						        "JPEG_2K": [jpeg2k_encode, jpeg2k_decode],  | 
					
					
						
						| 
							 | 
						        "JPEG_LS": [jpegls_encode, jpegls_decode], | 
					
					
						
						| 
							 | 
						        "RICE": [rcomp_encode, rcomp_decode], | 
					
					
						
						| 
							 | 
						    } | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    columns = [] | 
					
					
						
						| 
							 | 
						    for algo in ALL_CODECS.keys(): | 
					
					
						
						| 
							 | 
						        columns.append(algo + "_BPD") | 
					
					
						
						| 
							 | 
						        columns.append(algo + "_WRITE_RUNTIME") | 
					
					
						
						| 
							 | 
						        columns.append(algo + "_READ_RUNTIME") | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						    main(dim) |