--- license: mit size_categories: - 10K3: A self-supervised multimodal model for astronomy](https://arxiv.org/abs/2411.08842) - Code Repository: [GitHub: AstroM3](https://github.com/MeriDK/AstroM3/) - Original Data: [MeriDK/AstroM3Dataset](https://huggingface.co/datasets/MeriDK/AstroM3Dataset/) **Note:** The processed dataset `AstroM3Processed` is created from the original dataset `AstroM3Dataset` by using [preprocess.py](https://huggingface.co/datasets/MeriDK/AstroM3Dataset/blob/main/preprocess.py) ## Subsets and Seeds AstroM3Dataset is available in different subset sizes: - `full`: Entire dataset - `sub50`: 50% subset - `sub25`: 25% subset - `sub10`: 10% subset Each subset is sampled from the respective train, validation, and test splits of the full dataset. For reproducibility, each subset is provided with different random seeds: - `42`, `66`, `0`, `12`, `123` ## Usage To load the dataset using the Hugging Face `datasets` library, specify the name in the format "{subset}_{seed}". For example: ```python from datasets import load_dataset # Load the full dataset with seed 42 dataset = load_dataset("MeriDK/AstroM3Processed", name="full_42") # Load the 25% subset sampled using seed 123 dataset = load_dataset("MeriDK/AstroM3Processed", name="sub25_123") ``` --- ## Citation 🤗 If you find this dataset usefull, please cite our paper 🤗 ```bibtex @article{rizhko2024astrom, title={AstroM $\^{} 3$: A self-supervised multimodal model for astronomy}, author={Rizhko, Mariia and Bloom, Joshua S}, journal={arXiv preprint arXiv:2411.08842}, year={2024} } ```