BassemE commited on
Commit
c28e781
·
verified ·
1 Parent(s): 0fe3356

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +9 -49
README.md CHANGED
@@ -5,8 +5,8 @@ MuleSoft Documentation Embeddings for RAG Applications
5
  ## Dataset Information
6
 
7
  - **Version**: 1.0.0
8
- - **Created**: 2025-09-16T02:31:46.176390
9
- - **Source**: Weaviate Vector Database
10
  - **License**: MIT
11
  - **Language**: en
12
 
@@ -23,26 +23,6 @@ question-answering, retrieval, knowledge-base
23
  - **Knowledge Sources**: mulesoft, user_defined_docs
24
  - **Average Content Length**: 5079 characters
25
 
26
- ## RAG Configuration
27
-
28
- This dataset was created using the following RAG (Retrieval-Augmented Generation) configuration:
29
-
30
- ### Embedding Model
31
- - **Model Type**: OpenAI
32
- - **Model ID**: text-embedding-3-large
33
- - **Embedding Dimensions**: 3072
34
- - **Provider**: OpenAI
35
-
36
- ### Chunking Configuration
37
- - **Chunk Size**: 2048 characters
38
- - **Chunk Overlap**: 256 characters
39
-
40
- ### Technical Details
41
- - **Vector Database**: Weaviate
42
- - **Collection**: SkillPilotDataSet_v11
43
- - **Total Vectors**: 6430
44
- - **Vector Distance**: Cosine similarity
45
-
46
  ## Usage
47
 
48
  This dataset can be used for:
@@ -52,42 +32,22 @@ This dataset can be used for:
52
  - Technical interview preparation
53
  - AI assistant training
54
 
55
- ## Dataset Schema
56
-
57
- The dataset preserves the original Weaviate structure with the following columns:
58
-
59
- - **weaviate_id**: Unique identifier from Weaviate
60
- - **collection**: Source collection name (SkillPilotDataSet_v11)
61
- - **extracted_at**: Timestamp of extraction
62
- - **properties**: Nested object containing all original Weaviate properties:
63
- - `author`: Document author
64
- - `chunk_id`: Unique chunk identifier
65
- - `chunk_index`: Position of chunk in document
66
- - `document_id`: Source document identifier
67
- - `entities`: Extracted entities
68
- - `keywords`: Document keywords
69
- - `knowledge_source`: Source of knowledge (mulesoft, user_defined_docs)
70
- - `page_content`: Main text content
71
- - `relationships`: Entity relationships
72
- - `source_url`: Original document URL
73
- - `tags`: Document tags
74
- - `title`: Document title
75
- - `total_chunks`: Total number of chunks in document
76
-
77
  ## Files
78
 
 
 
79
  - `dataset.parquet`: Dataset in Parquet format (recommended for large datasets)
80
- - `README.md`: This documentation file
81
 
82
  ## Citation
83
 
84
  If you use this dataset, please cite:
85
 
86
  ```bibtex
87
- @dataset{{mulesoft_documentation_embeddings,
88
- title={{MuleSoft Documentation Embeddings}},
89
- author={{Bassem Elsodany}},
90
  year={{2025}},
91
- url={{https://huggingface.co/datasets/BassemE/mulesoft-documentation-embeddings}}
92
  }}
93
  ```
 
5
  ## Dataset Information
6
 
7
  - **Version**: 1.0.0
8
+ - **Created**: 2025-09-16T02:37:51.960450
9
+ - **Source**: Vector Database
10
  - **License**: MIT
11
  - **Language**: en
12
 
 
23
  - **Knowledge Sources**: mulesoft, user_defined_docs
24
  - **Average Content Length**: 5079 characters
25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
  ## Usage
27
 
28
  This dataset can be used for:
 
32
  - Technical interview preparation
33
  - AI assistant training
34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  ## Files
36
 
37
+ - `dataset.json`: Complete dataset in JSON format
38
+ - `dataset.csv`: Dataset in CSV format
39
  - `dataset.parquet`: Dataset in Parquet format (recommended for large datasets)
40
+ - `dataset_metadata.json`: Detailed metadata and statistics
41
 
42
  ## Citation
43
 
44
  If you use this dataset, please cite:
45
 
46
  ```bibtex
47
+ @dataset{{skillpilot_knowledge_base,
48
+ title={{SkillPilot Knowledge Base}},
49
+ author={{SkillPilot Team}},
50
  year={{2025}},
51
+ url={{https://huggingface.co/datasets/skillpilot/knowledge-base}}
52
  }}
53
  ```