{ "cells": [ { "cell_type": "code", "execution_count": 6, "id": "ab5e9daf", "metadata": {}, "outputs": [], "source": [ "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 2, "id": "77ae8f00", "metadata": {}, "outputs": [], "source": [ "import sys, os\n" ] }, { "cell_type": "code", "execution_count": 3, "id": "4f7e5910", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "kernel python : /opt/homebrew/Caskroom/miniconda/base/bin/python\n" ] } ], "source": [ "print(\"kernel python :\", sys.executable)\n" ] }, { "cell_type": "code", "execution_count": 4, "id": "ca86e045", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "env name : base\n" ] }, { "ename": "NameError", "evalue": "name 'タ' is not defined", "output_type": "error", "traceback": [ "\u001b[31m---------------------------------------------------------------------------\u001b[39m", "\u001b[31mNameError\u001b[39m Traceback (most recent call last)", "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[4]\u001b[39m\u001b[32m, line 2\u001b[39m\n\u001b[32m 1\u001b[39m \u001b[38;5;28mprint\u001b[39m(\u001b[33m\"\u001b[39m\u001b[33menv name :\u001b[39m\u001b[33m\"\u001b[39m, os.environ.get(\u001b[33m\"\u001b[39m\u001b[33mCONDA_DEFAULT_ENV\u001b[39m\u001b[33m\"\u001b[39m))\n\u001b[32m----> \u001b[39m\u001b[32m2\u001b[39m \u001b[43mタ\u001b[49m\n", "\u001b[31mNameError\u001b[39m: name 'タ' is not defined" ] } ], "source": [ "print(\"env name :\", os.environ.get(\"CONDA_DEFAULT_ENV\"))\n", "タ" ] }, { "cell_type": "code", "execution_count": 5, "id": "f67540dd", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "env name : base\n" ] } ], "source": [ "print(\"env name :\", os.environ.get(\"CONDA_DEFAULT_ENV\"))\n" ] }, { "cell_type": "code", "execution_count": 1, "id": "eb236811", "metadata": {}, "outputs": [ { "ename": "NameError", "evalue": "name 'pd' is not defined", "output_type": "error", "traceback": [ "\u001b[31m---------------------------------------------------------------------------\u001b[39m", "\u001b[31mNameError\u001b[39m Traceback (most recent call last)", "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[1]\u001b[39m\u001b[32m, line 1\u001b[39m\n\u001b[32m----> \u001b[39m\u001b[32m1\u001b[39m df = \u001b[43mpd\u001b[49m.read_csv(\u001b[33m\"\u001b[39m\u001b[33mactivities.csv\u001b[39m\u001b[33m\"\u001b[39m, parse_dates=[\u001b[33m\"\u001b[39m\u001b[33mstart_date\u001b[39m\u001b[33m\"\u001b[39m])\n", "\u001b[31mNameError\u001b[39m: name 'pd' is not defined" ] } ], "source": [ "df = pd.read_csv(\"activities.csv\", parse_dates=[\"start_date\"])" ] }, { "cell_type": "code", "execution_count": 2, "id": "d2a0bace", "metadata": {}, "outputs": [], "source": [ "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 3, "id": "75448c16", "metadata": {}, "outputs": [ { "ename": "FileNotFoundError", "evalue": "[Errno 2] No such file or directory: 'activities.csv'", "output_type": "error", "traceback": [ "\u001b[31m---------------------------------------------------------------------------\u001b[39m", "\u001b[31mFileNotFoundError\u001b[39m Traceback (most recent call last)", "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[3]\u001b[39m\u001b[32m, line 1\u001b[39m\n\u001b[32m----> \u001b[39m\u001b[32m1\u001b[39m df = \u001b[43mpd\u001b[49m\u001b[43m.\u001b[49m\u001b[43mread_csv\u001b[49m\u001b[43m(\u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mactivities.csv\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mparse_dates\u001b[49m\u001b[43m=\u001b[49m\u001b[43m[\u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mstart_date\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n", "\u001b[36mFile \u001b[39m\u001b[32m/opt/homebrew/Caskroom/miniconda/base/lib/python3.12/site-packages/pandas/io/parsers/readers.py:1026\u001b[39m, in \u001b[36mread_csv\u001b[39m\u001b[34m(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, date_format, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, encoding_errors, dialect, on_bad_lines, delim_whitespace, low_memory, memory_map, float_precision, storage_options, dtype_backend)\u001b[39m\n\u001b[32m 1013\u001b[39m kwds_defaults = _refine_defaults_read(\n\u001b[32m 1014\u001b[39m dialect,\n\u001b[32m 1015\u001b[39m delimiter,\n\u001b[32m (...)\u001b[39m\u001b[32m 1022\u001b[39m dtype_backend=dtype_backend,\n\u001b[32m 1023\u001b[39m )\n\u001b[32m 1024\u001b[39m kwds.update(kwds_defaults)\n\u001b[32m-> \u001b[39m\u001b[32m1026\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_read\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfilepath_or_buffer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n", "\u001b[36mFile \u001b[39m\u001b[32m/opt/homebrew/Caskroom/miniconda/base/lib/python3.12/site-packages/pandas/io/parsers/readers.py:620\u001b[39m, in \u001b[36m_read\u001b[39m\u001b[34m(filepath_or_buffer, kwds)\u001b[39m\n\u001b[32m 617\u001b[39m _validate_names(kwds.get(\u001b[33m\"\u001b[39m\u001b[33mnames\u001b[39m\u001b[33m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m))\n\u001b[32m 619\u001b[39m \u001b[38;5;66;03m# Create the parser.\u001b[39;00m\n\u001b[32m--> \u001b[39m\u001b[32m620\u001b[39m parser = \u001b[43mTextFileReader\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfilepath_or_buffer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 622\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m chunksize \u001b[38;5;129;01mor\u001b[39;00m iterator:\n\u001b[32m 623\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m parser\n", "\u001b[36mFile \u001b[39m\u001b[32m/opt/homebrew/Caskroom/miniconda/base/lib/python3.12/site-packages/pandas/io/parsers/readers.py:1620\u001b[39m, in \u001b[36mTextFileReader.__init__\u001b[39m\u001b[34m(self, f, engine, **kwds)\u001b[39m\n\u001b[32m 1617\u001b[39m \u001b[38;5;28mself\u001b[39m.options[\u001b[33m\"\u001b[39m\u001b[33mhas_index_names\u001b[39m\u001b[33m\"\u001b[39m] = kwds[\u001b[33m\"\u001b[39m\u001b[33mhas_index_names\u001b[39m\u001b[33m\"\u001b[39m]\n\u001b[32m 1619\u001b[39m \u001b[38;5;28mself\u001b[39m.handles: IOHandles | \u001b[38;5;28;01mNone\u001b[39;00m = \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[32m-> \u001b[39m\u001b[32m1620\u001b[39m \u001b[38;5;28mself\u001b[39m._engine = \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43m_make_engine\u001b[49m\u001b[43m(\u001b[49m\u001b[43mf\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mengine\u001b[49m\u001b[43m)\u001b[49m\n", "\u001b[36mFile \u001b[39m\u001b[32m/opt/homebrew/Caskroom/miniconda/base/lib/python3.12/site-packages/pandas/io/parsers/readers.py:1880\u001b[39m, in \u001b[36mTextFileReader._make_engine\u001b[39m\u001b[34m(self, f, engine)\u001b[39m\n\u001b[32m 1878\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[33m\"\u001b[39m\u001b[33mb\u001b[39m\u001b[33m\"\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m mode:\n\u001b[32m 1879\u001b[39m mode += \u001b[33m\"\u001b[39m\u001b[33mb\u001b[39m\u001b[33m\"\u001b[39m\n\u001b[32m-> \u001b[39m\u001b[32m1880\u001b[39m \u001b[38;5;28mself\u001b[39m.handles = \u001b[43mget_handle\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 1881\u001b[39m \u001b[43m \u001b[49m\u001b[43mf\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1882\u001b[39m \u001b[43m \u001b[49m\u001b[43mmode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1883\u001b[39m \u001b[43m \u001b[49m\u001b[43mencoding\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43moptions\u001b[49m\u001b[43m.\u001b[49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mencoding\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1884\u001b[39m \u001b[43m \u001b[49m\u001b[43mcompression\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43moptions\u001b[49m\u001b[43m.\u001b[49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mcompression\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1885\u001b[39m \u001b[43m \u001b[49m\u001b[43mmemory_map\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43moptions\u001b[49m\u001b[43m.\u001b[49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mmemory_map\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1886\u001b[39m \u001b[43m \u001b[49m\u001b[43mis_text\u001b[49m\u001b[43m=\u001b[49m\u001b[43mis_text\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1887\u001b[39m \u001b[43m \u001b[49m\u001b[43merrors\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43moptions\u001b[49m\u001b[43m.\u001b[49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mencoding_errors\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mstrict\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1888\u001b[39m \u001b[43m \u001b[49m\u001b[43mstorage_options\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43moptions\u001b[49m\u001b[43m.\u001b[49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mstorage_options\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1889\u001b[39m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 1890\u001b[39m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28mself\u001b[39m.handles \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[32m 1891\u001b[39m f = \u001b[38;5;28mself\u001b[39m.handles.handle\n", "\u001b[36mFile \u001b[39m\u001b[32m/opt/homebrew/Caskroom/miniconda/base/lib/python3.12/site-packages/pandas/io/common.py:873\u001b[39m, in \u001b[36mget_handle\u001b[39m\u001b[34m(path_or_buf, mode, encoding, compression, memory_map, is_text, errors, storage_options)\u001b[39m\n\u001b[32m 868\u001b[39m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(handle, \u001b[38;5;28mstr\u001b[39m):\n\u001b[32m 869\u001b[39m \u001b[38;5;66;03m# Check whether the filename is to be opened in binary mode.\u001b[39;00m\n\u001b[32m 870\u001b[39m \u001b[38;5;66;03m# Binary mode does not support 'encoding' and 'newline'.\u001b[39;00m\n\u001b[32m 871\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m ioargs.encoding \u001b[38;5;129;01mand\u001b[39;00m \u001b[33m\"\u001b[39m\u001b[33mb\u001b[39m\u001b[33m\"\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m ioargs.mode:\n\u001b[32m 872\u001b[39m \u001b[38;5;66;03m# Encoding\u001b[39;00m\n\u001b[32m--> \u001b[39m\u001b[32m873\u001b[39m handle = \u001b[38;5;28;43mopen\u001b[39;49m\u001b[43m(\u001b[49m\n\u001b[32m 874\u001b[39m \u001b[43m \u001b[49m\u001b[43mhandle\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 875\u001b[39m \u001b[43m \u001b[49m\u001b[43mioargs\u001b[49m\u001b[43m.\u001b[49m\u001b[43mmode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 876\u001b[39m \u001b[43m \u001b[49m\u001b[43mencoding\u001b[49m\u001b[43m=\u001b[49m\u001b[43mioargs\u001b[49m\u001b[43m.\u001b[49m\u001b[43mencoding\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 877\u001b[39m \u001b[43m \u001b[49m\u001b[43merrors\u001b[49m\u001b[43m=\u001b[49m\u001b[43merrors\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 878\u001b[39m \u001b[43m \u001b[49m\u001b[43mnewline\u001b[49m\u001b[43m=\u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[32m 879\u001b[39m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 880\u001b[39m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[32m 881\u001b[39m \u001b[38;5;66;03m# Binary mode\u001b[39;00m\n\u001b[32m 882\u001b[39m handle = \u001b[38;5;28mopen\u001b[39m(handle, ioargs.mode)\n", "\u001b[31mFileNotFoundError\u001b[39m: [Errno 2] No such file or directory: 'activities.csv'" ] } ], "source": [ "df = pd.read_csv(\"activities.csv\", parse_dates=[\"start_date\"])" ] }, { "cell_type": "code", "execution_count": 4, "id": "eb71392c", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'/Users/jitsugen/Documents/SoloPRJ/Strava-Dataset-PRJ'" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pwd" ] }, { "cell_type": "code", "execution_count": 7, "id": "d31b0b33", "metadata": {}, "outputs": [ { "ename": "ValueError", "evalue": "Missing column provided to 'parse_dates': 'start_date'", "output_type": "error", "traceback": [ "\u001b[31m---------------------------------------------------------------------------\u001b[39m", "\u001b[31mValueError\u001b[39m Traceback (most recent call last)", "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[7]\u001b[39m\u001b[32m, line 1\u001b[39m\n\u001b[32m----> \u001b[39m\u001b[32m1\u001b[39m df = \u001b[43mpd\u001b[49m\u001b[43m.\u001b[49m\u001b[43mread_csv\u001b[49m\u001b[43m(\u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43m/Users/jitsugen/Documents/SoloPRJ/Strava-Dataset-PRJ/StravaData/activities.csv\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mparse_dates\u001b[49m\u001b[43m=\u001b[49m\u001b[43m[\u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mstart_date\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n", "\u001b[36mFile \u001b[39m\u001b[32m/opt/homebrew/Caskroom/miniconda/base/lib/python3.12/site-packages/pandas/io/parsers/readers.py:1026\u001b[39m, in \u001b[36mread_csv\u001b[39m\u001b[34m(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, date_format, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, encoding_errors, dialect, on_bad_lines, delim_whitespace, low_memory, memory_map, float_precision, storage_options, dtype_backend)\u001b[39m\n\u001b[32m 1013\u001b[39m kwds_defaults = _refine_defaults_read(\n\u001b[32m 1014\u001b[39m dialect,\n\u001b[32m 1015\u001b[39m delimiter,\n\u001b[32m (...)\u001b[39m\u001b[32m 1022\u001b[39m dtype_backend=dtype_backend,\n\u001b[32m 1023\u001b[39m )\n\u001b[32m 1024\u001b[39m kwds.update(kwds_defaults)\n\u001b[32m-> \u001b[39m\u001b[32m1026\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_read\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfilepath_or_buffer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n", "\u001b[36mFile \u001b[39m\u001b[32m/opt/homebrew/Caskroom/miniconda/base/lib/python3.12/site-packages/pandas/io/parsers/readers.py:620\u001b[39m, in \u001b[36m_read\u001b[39m\u001b[34m(filepath_or_buffer, kwds)\u001b[39m\n\u001b[32m 617\u001b[39m _validate_names(kwds.get(\u001b[33m\"\u001b[39m\u001b[33mnames\u001b[39m\u001b[33m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m))\n\u001b[32m 619\u001b[39m \u001b[38;5;66;03m# Create the parser.\u001b[39;00m\n\u001b[32m--> \u001b[39m\u001b[32m620\u001b[39m parser = \u001b[43mTextFileReader\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfilepath_or_buffer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 622\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m chunksize \u001b[38;5;129;01mor\u001b[39;00m iterator:\n\u001b[32m 623\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m parser\n", "\u001b[36mFile \u001b[39m\u001b[32m/opt/homebrew/Caskroom/miniconda/base/lib/python3.12/site-packages/pandas/io/parsers/readers.py:1620\u001b[39m, in \u001b[36mTextFileReader.__init__\u001b[39m\u001b[34m(self, f, engine, **kwds)\u001b[39m\n\u001b[32m 1617\u001b[39m \u001b[38;5;28mself\u001b[39m.options[\u001b[33m\"\u001b[39m\u001b[33mhas_index_names\u001b[39m\u001b[33m\"\u001b[39m] = kwds[\u001b[33m\"\u001b[39m\u001b[33mhas_index_names\u001b[39m\u001b[33m\"\u001b[39m]\n\u001b[32m 1619\u001b[39m \u001b[38;5;28mself\u001b[39m.handles: IOHandles | \u001b[38;5;28;01mNone\u001b[39;00m = \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[32m-> \u001b[39m\u001b[32m1620\u001b[39m \u001b[38;5;28mself\u001b[39m._engine = \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43m_make_engine\u001b[49m\u001b[43m(\u001b[49m\u001b[43mf\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mengine\u001b[49m\u001b[43m)\u001b[49m\n", "\u001b[36mFile \u001b[39m\u001b[32m/opt/homebrew/Caskroom/miniconda/base/lib/python3.12/site-packages/pandas/io/parsers/readers.py:1898\u001b[39m, in \u001b[36mTextFileReader._make_engine\u001b[39m\u001b[34m(self, f, engine)\u001b[39m\n\u001b[32m 1895\u001b[39m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(msg)\n\u001b[32m 1897\u001b[39m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[32m-> \u001b[39m\u001b[32m1898\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mmapping\u001b[49m\u001b[43m[\u001b[49m\u001b[43mengine\u001b[49m\u001b[43m]\u001b[49m\u001b[43m(\u001b[49m\u001b[43mf\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43moptions\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 1899\u001b[39m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m:\n\u001b[32m 1900\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m.handles \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n", "\u001b[36mFile \u001b[39m\u001b[32m/opt/homebrew/Caskroom/miniconda/base/lib/python3.12/site-packages/pandas/io/parsers/c_parser_wrapper.py:161\u001b[39m, in \u001b[36mCParserWrapper.__init__\u001b[39m\u001b[34m(self, src, **kwds)\u001b[39m\n\u001b[32m 155\u001b[39m \u001b[38;5;28mself\u001b[39m._validate_usecols_names(\n\u001b[32m 156\u001b[39m usecols,\n\u001b[32m 157\u001b[39m \u001b[38;5;28mself\u001b[39m.names, \u001b[38;5;66;03m# type: ignore[has-type]\u001b[39;00m\n\u001b[32m 158\u001b[39m )\n\u001b[32m 160\u001b[39m \u001b[38;5;66;03m# error: Cannot determine type of 'names'\u001b[39;00m\n\u001b[32m--> \u001b[39m\u001b[32m161\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43m_validate_parse_dates_presence\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mnames\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;66;03m# type: ignore[has-type]\u001b[39;00m\n\u001b[32m 162\u001b[39m \u001b[38;5;28mself\u001b[39m._set_noconvert_columns()\n\u001b[32m 164\u001b[39m \u001b[38;5;66;03m# error: Cannot determine type of 'names'\u001b[39;00m\n", "\u001b[36mFile \u001b[39m\u001b[32m/opt/homebrew/Caskroom/miniconda/base/lib/python3.12/site-packages/pandas/io/parsers/base_parser.py:243\u001b[39m, in \u001b[36mParserBase._validate_parse_dates_presence\u001b[39m\u001b[34m(self, columns)\u001b[39m\n\u001b[32m 233\u001b[39m missing_cols = \u001b[33m\"\u001b[39m\u001b[33m, \u001b[39m\u001b[33m\"\u001b[39m.join(\n\u001b[32m 234\u001b[39m \u001b[38;5;28msorted\u001b[39m(\n\u001b[32m 235\u001b[39m {\n\u001b[32m (...)\u001b[39m\u001b[32m 240\u001b[39m )\n\u001b[32m 241\u001b[39m )\n\u001b[32m 242\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m missing_cols:\n\u001b[32m--> \u001b[39m\u001b[32m243\u001b[39m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[32m 244\u001b[39m \u001b[33mf\u001b[39m\u001b[33m\"\u001b[39m\u001b[33mMissing column provided to \u001b[39m\u001b[33m'\u001b[39m\u001b[33mparse_dates\u001b[39m\u001b[33m'\u001b[39m\u001b[33m: \u001b[39m\u001b[33m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mmissing_cols\u001b[38;5;132;01m}\u001b[39;00m\u001b[33m'\u001b[39m\u001b[33m\"\u001b[39m\n\u001b[32m 245\u001b[39m )\n\u001b[32m 246\u001b[39m \u001b[38;5;66;03m# Convert positions to actual column names\u001b[39;00m\n\u001b[32m 247\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m [\n\u001b[32m 248\u001b[39m col \u001b[38;5;28;01mif\u001b[39;00m (\u001b[38;5;28misinstance\u001b[39m(col, \u001b[38;5;28mstr\u001b[39m) \u001b[38;5;129;01mor\u001b[39;00m col \u001b[38;5;129;01min\u001b[39;00m columns) \u001b[38;5;28;01melse\u001b[39;00m columns[col]\n\u001b[32m 249\u001b[39m \u001b[38;5;28;01mfor\u001b[39;00m col \u001b[38;5;129;01min\u001b[39;00m cols_needed\n\u001b[32m 250\u001b[39m ]\n", "\u001b[31mValueError\u001b[39m: Missing column provided to 'parse_dates': 'start_date'" ] } ], "source": [ "df = pd.read_csv(\"/Users/jitsugen/Documents/SoloPRJ/Strava-Dataset-PRJ/StravaData/activities.csv\", parse_dates=[\"start_date\"])" ] }, { "cell_type": "code", "execution_count": 12, "id": "449763c3", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "✅ activities.csv -> activities.csv へ変換完了\n" ] } ], "source": [ "# ============================================================\n", "# Strava 日本語ヘッダー → 英語ヘッダー 一括変換スクリプト\n", "# Jupyter Notebook 用(セル 1 発で完結)\n", "# ============================================================\n", "\n", "import pandas as pd\n", "from pathlib import Path\n", "\n", "# ▼ 変換対象ファイル\n", "SRC = Path(\"/Users/jitsugen/Documents/SoloPRJ/Strava-Dataset-PRJ/StravaData/activities.csv\") # 日本語ヘッダー CSV\n", "DST = Path(\"/Users/jitsugen/Documents/SoloPRJ/Strava-Dataset-PRJ/StravaData/activities.csv\") # 出力先(英語ヘッダー CSV)\n", "\n", "# ▼ 日本語 → 英語 マッピング辞書\n", "JP2EN = {\n", " # ==== 基本情報 ====\n", " \"アクティビティID\": \"Activity ID\",\n", " \"アクティビティ実行日\": \"Activity Date\",\n", " \"アクティビティ名\": \"Activity Name\",\n", " \"アクティビティタイプ\": \"Activity Type\",\n", " \"アクティビティの説明\": \"Description\",\n", " \"経過時間\": \"Elapsed Time\",\n", " \"移動時間\": \"Moving Time\",\n", " \"距離\": \"Distance\",\n", " \"開始時間\": \"Start Time\",\n", " \"タイプ\": \"Device Type\",\n", " \"アクティビティのプライベートメモ\": \"Activity Private Notes\",\n", " \"アクティビティギア\": \"Gear\",\n", " \"ギア\": \"Gear\",\n", " \"ファイル名\": \"Filename\",\n", " # ==== 心拍・パワー ====\n", " \"最大心拍数\": \"Max Heart Rate\",\n", " \"平均心拍数\": \"Average Heart Rate\",\n", " \"最大ワット\": \"Max Power\",\n", " \"平均ワット\": \"Average Power\",\n", " \"加重平均パワー\": \"Weighted Average Power\",\n", " \"パワーカウント\": \"Power Count\",\n", " # ==== スピード・距離 ====\n", " \"最高速度\": \"Max Speed\",\n", " \"平均速度\": \"Average Speed\",\n", " \"平均経過スピード\": \"Average Elapsed Speed\",\n", " \"Grade Adjusted Pace\": \"Grade Adjusted Pace\",\n", " \"Grade Adjusted Pace (平均)\": \"Grade Adjusted Pace (Average)\",\n", " # ==== 標高・勾配 ====\n", " \"獲得標高\": \"Elevation Gain\",\n", " \"獲得標高(下り)\": \"Elevation Loss\",\n", " \"最低標高\": \"Min Elevation\",\n", " \"最高標高\": \"Max Elevation\",\n", " \"最大勾配\": \"Max Grade\",\n", " \"平均勾配\": \"Average Grade\",\n", " \"平均プラス勾配\": \"Average Positive Grade\",\n", " \"平均マイナス勾配\": \"Average Negative Grade\",\n", " # ==== ケイデンス ====\n", " \"最大ケイデンス\": \"Max Cadence\",\n", " \"平均ケイデンス\": \"Average Cadence\",\n", " # ==== エフォート/負荷 ====\n", " \"相対的エフォート\": \"Relative Effort\",\n", " \"主観的相対的エフォート\": \"Perceived Relative Effort\",\n", " \"主観的運動強度\": \"Perceived Exertion\",\n", " \"主観的運動強度を使用する\": \"Perceived Exertion Used\",\n", " \"合計運動量\": \"Total Work\",\n", " \"トレーニングロード\": \"Training Load\",\n", " \"強度\": \"Intensity\",\n", " # ==== 時間内訳 ====\n", " \"上り坂のタイム\": \"Uphill Time\",\n", " \"下り坂のタイム\": \"Downhill Time\",\n", " \"その他のタイム\": \"Other Time\",\n", " \"タイマー時間\": \"Timer Time\",\n", " # ==== 体重・重量 ====\n", " \"アスリート体重\": \"Athlete Weight\",\n", " \"自転車重量\": \"Bike Weight\",\n", " \"総重量\": \"Total Weight\",\n", " # ==== 温度・気象 ====\n", " \"最高気温\": \"Max Temperature\",\n", " \"平均気温\": \"Average Temperature\",\n", " \"体感温度\": \"Apparent Temperature\",\n", " \"露点\": \"Dew Point\",\n", " \"湿度\": \"Humidity\",\n", " \"気圧\": \"Pressure\",\n", " \"天候\": \"Weather\",\n", " \"観測時刻\": \"Observation Time\",\n", " \"風速\": \"Wind Speed\",\n", " \"瞬間風速\": \"Wind Gust\",\n", " \"風向\": \"Wind Bearing\",\n", " \"降水量\": \"Precipitation\",\n", " \"降水確率\": \"Precipitation Probability\",\n", " \"降水タイプ\": \"Precipitation Type\",\n", " \"雲量\": \"Cloud Cover\",\n", " \"視程\": \"Visibility\",\n", " \"UV指数\": \"UV Index\",\n", " \"オゾン情報\": \"Ozone\",\n", " \"日の出\": \"Sunrise Time\",\n", " \"日の入\": \"Sunset Time\",\n", " \"月齢\": \"Moon Phase\",\n", " # ==== ルート特有 ====\n", " \"ジャンプ数\": \"Jump Count\",\n", " \"合計グリット\": \"Total Grit\",\n", " \"平均フロー\": \"Average Flow\",\n", " \"フラグが立てられています\": \"Flagged\",\n", " \"未舗装路の距離\": \"Dirt Distance\",\n", " \"新規探索した距離\": \"Newly Explored Distance\",\n", " \"新規探索した未舗装路の距離\": \"Newly Explored Dirt Distance\",\n", " # ==== カロリー・その他 ====\n", " \"カロリー\": \"Calories\",\n", " \"ラン数\": \"Number of Runs\",\n", " \"通勤\": \"Commute\",\n", " \"CO2の削減量\": \"Carbon Savings\",\n", " \"プールの長さ\": \"Pool Length\",\n", " \"アクティビティ数\": \"Activity Count\",\n", " \"ステップ合計\": \"Step Count\",\n", " \"メディア\": \"Media\",\n", " # ==== その他 ====\n", " \"アップロードより\": \"Weather Observed\",\n", " \"合計サイクル\": \"Total Cycles\",\n", "}\n", "\n", "def build_rename_map(columns):\n", " \"\"\"重複列(例: '距離', '距離.1')にも対応したリネーム辞書を作成\"\"\"\n", " rename = {}\n", " for col in columns:\n", " base = col.split(\".\")[0] # 例: '距離'\n", " suffix = col[len(base):] # '' もしくは '.1'\n", " if base in JP2EN:\n", " rename[col] = JP2EN[base] + suffix\n", " return rename\n", "\n", "def convert_headers(src: Path, dst: Path):\n", " df = pd.read_csv(src)\n", " df = df.rename(columns=build_rename_map(df.columns))\n", " df.to_csv(dst, index=False)\n", " print(f\"✅ {src.name} -> {dst.name} へ変換完了\")\n", "\n", "# --- 実行 -------------------------------------------------------\n", "if not SRC.exists():\n", " raise FileNotFoundError(f\"CSV not found: {SRC.resolve()}\")\n", "\n", "convert_headers(SRC, DST)\n" ] }, { "cell_type": "code", "execution_count": 13, "id": "48b01972", "metadata": {}, "outputs": [], "source": [ "df = pd.read_csv(\"StravaData/activities.csv\", parse_dates=[\"Activity Date\"])" ] }, { "cell_type": "code", "execution_count": 14, "id": "9cda0d2e", "metadata": {}, "outputs": [ { "ename": "FileNotFoundError", "evalue": "[Errno 2] No such file or directory: 'activities_en.csv'", "output_type": "error", "traceback": [ "\u001b[31m---------------------------------------------------------------------------\u001b[39m", "\u001b[31mFileNotFoundError\u001b[39m Traceback (most recent call last)", "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[14]\u001b[39m\u001b[32m, line 1\u001b[39m\n\u001b[32m----> \u001b[39m\u001b[32m1\u001b[39m df = \u001b[43mpd\u001b[49m\u001b[43m.\u001b[49m\u001b[43mread_csv\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 2\u001b[39m \u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mactivities_en.csv\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[32m 3\u001b[39m \u001b[43m \u001b[49m\u001b[43mparse_dates\u001b[49m\u001b[43m=\u001b[49m\u001b[43m[\u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mActivity Date\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# 日付列を datetime へ\u001b[39;49;00m\n\u001b[32m 4\u001b[39m \u001b[43m \u001b[49m\u001b[43mdtype\u001b[49m\u001b[43m=\u001b[49m\u001b[43m{\u001b[49m\n\u001b[32m 5\u001b[39m \u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mDistance\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mfloat32\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[32m 6\u001b[39m \u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mElapsed Time\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mint32\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[32m 7\u001b[39m \u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mMoving Time\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mint32\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[32m 8\u001b[39m \u001b[43m \u001b[49m\u001b[43m}\u001b[49m\n\u001b[32m 9\u001b[39m \u001b[43m)\u001b[49m\n", "\u001b[36mFile \u001b[39m\u001b[32m/opt/homebrew/Caskroom/miniconda/base/lib/python3.12/site-packages/pandas/io/parsers/readers.py:1026\u001b[39m, in \u001b[36mread_csv\u001b[39m\u001b[34m(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, date_format, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, encoding_errors, dialect, on_bad_lines, delim_whitespace, low_memory, memory_map, float_precision, storage_options, dtype_backend)\u001b[39m\n\u001b[32m 1013\u001b[39m kwds_defaults = _refine_defaults_read(\n\u001b[32m 1014\u001b[39m dialect,\n\u001b[32m 1015\u001b[39m delimiter,\n\u001b[32m (...)\u001b[39m\u001b[32m 1022\u001b[39m dtype_backend=dtype_backend,\n\u001b[32m 1023\u001b[39m )\n\u001b[32m 1024\u001b[39m kwds.update(kwds_defaults)\n\u001b[32m-> \u001b[39m\u001b[32m1026\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_read\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfilepath_or_buffer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n", "\u001b[36mFile \u001b[39m\u001b[32m/opt/homebrew/Caskroom/miniconda/base/lib/python3.12/site-packages/pandas/io/parsers/readers.py:620\u001b[39m, in \u001b[36m_read\u001b[39m\u001b[34m(filepath_or_buffer, kwds)\u001b[39m\n\u001b[32m 617\u001b[39m _validate_names(kwds.get(\u001b[33m\"\u001b[39m\u001b[33mnames\u001b[39m\u001b[33m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m))\n\u001b[32m 619\u001b[39m \u001b[38;5;66;03m# Create the parser.\u001b[39;00m\n\u001b[32m--> \u001b[39m\u001b[32m620\u001b[39m parser = \u001b[43mTextFileReader\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfilepath_or_buffer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 622\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m chunksize \u001b[38;5;129;01mor\u001b[39;00m iterator:\n\u001b[32m 623\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m parser\n", "\u001b[36mFile \u001b[39m\u001b[32m/opt/homebrew/Caskroom/miniconda/base/lib/python3.12/site-packages/pandas/io/parsers/readers.py:1620\u001b[39m, in \u001b[36mTextFileReader.__init__\u001b[39m\u001b[34m(self, f, engine, **kwds)\u001b[39m\n\u001b[32m 1617\u001b[39m \u001b[38;5;28mself\u001b[39m.options[\u001b[33m\"\u001b[39m\u001b[33mhas_index_names\u001b[39m\u001b[33m\"\u001b[39m] = kwds[\u001b[33m\"\u001b[39m\u001b[33mhas_index_names\u001b[39m\u001b[33m\"\u001b[39m]\n\u001b[32m 1619\u001b[39m \u001b[38;5;28mself\u001b[39m.handles: IOHandles | \u001b[38;5;28;01mNone\u001b[39;00m = \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[32m-> \u001b[39m\u001b[32m1620\u001b[39m \u001b[38;5;28mself\u001b[39m._engine = \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43m_make_engine\u001b[49m\u001b[43m(\u001b[49m\u001b[43mf\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mengine\u001b[49m\u001b[43m)\u001b[49m\n", "\u001b[36mFile \u001b[39m\u001b[32m/opt/homebrew/Caskroom/miniconda/base/lib/python3.12/site-packages/pandas/io/parsers/readers.py:1880\u001b[39m, in \u001b[36mTextFileReader._make_engine\u001b[39m\u001b[34m(self, f, engine)\u001b[39m\n\u001b[32m 1878\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[33m\"\u001b[39m\u001b[33mb\u001b[39m\u001b[33m\"\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m mode:\n\u001b[32m 1879\u001b[39m mode += \u001b[33m\"\u001b[39m\u001b[33mb\u001b[39m\u001b[33m\"\u001b[39m\n\u001b[32m-> \u001b[39m\u001b[32m1880\u001b[39m \u001b[38;5;28mself\u001b[39m.handles = \u001b[43mget_handle\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 1881\u001b[39m \u001b[43m \u001b[49m\u001b[43mf\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1882\u001b[39m \u001b[43m \u001b[49m\u001b[43mmode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1883\u001b[39m \u001b[43m \u001b[49m\u001b[43mencoding\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43moptions\u001b[49m\u001b[43m.\u001b[49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mencoding\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1884\u001b[39m \u001b[43m \u001b[49m\u001b[43mcompression\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43moptions\u001b[49m\u001b[43m.\u001b[49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mcompression\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1885\u001b[39m \u001b[43m \u001b[49m\u001b[43mmemory_map\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43moptions\u001b[49m\u001b[43m.\u001b[49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mmemory_map\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1886\u001b[39m \u001b[43m \u001b[49m\u001b[43mis_text\u001b[49m\u001b[43m=\u001b[49m\u001b[43mis_text\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1887\u001b[39m \u001b[43m \u001b[49m\u001b[43merrors\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43moptions\u001b[49m\u001b[43m.\u001b[49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mencoding_errors\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mstrict\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1888\u001b[39m \u001b[43m \u001b[49m\u001b[43mstorage_options\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43moptions\u001b[49m\u001b[43m.\u001b[49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mstorage_options\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1889\u001b[39m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 1890\u001b[39m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28mself\u001b[39m.handles \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[32m 1891\u001b[39m f = \u001b[38;5;28mself\u001b[39m.handles.handle\n", "\u001b[36mFile \u001b[39m\u001b[32m/opt/homebrew/Caskroom/miniconda/base/lib/python3.12/site-packages/pandas/io/common.py:873\u001b[39m, in \u001b[36mget_handle\u001b[39m\u001b[34m(path_or_buf, mode, encoding, compression, memory_map, is_text, errors, storage_options)\u001b[39m\n\u001b[32m 868\u001b[39m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(handle, \u001b[38;5;28mstr\u001b[39m):\n\u001b[32m 869\u001b[39m \u001b[38;5;66;03m# Check whether the filename is to be opened in binary mode.\u001b[39;00m\n\u001b[32m 870\u001b[39m \u001b[38;5;66;03m# Binary mode does not support 'encoding' and 'newline'.\u001b[39;00m\n\u001b[32m 871\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m ioargs.encoding \u001b[38;5;129;01mand\u001b[39;00m \u001b[33m\"\u001b[39m\u001b[33mb\u001b[39m\u001b[33m\"\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m ioargs.mode:\n\u001b[32m 872\u001b[39m \u001b[38;5;66;03m# Encoding\u001b[39;00m\n\u001b[32m--> \u001b[39m\u001b[32m873\u001b[39m handle = \u001b[38;5;28;43mopen\u001b[39;49m\u001b[43m(\u001b[49m\n\u001b[32m 874\u001b[39m \u001b[43m \u001b[49m\u001b[43mhandle\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 875\u001b[39m \u001b[43m \u001b[49m\u001b[43mioargs\u001b[49m\u001b[43m.\u001b[49m\u001b[43mmode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 876\u001b[39m \u001b[43m \u001b[49m\u001b[43mencoding\u001b[49m\u001b[43m=\u001b[49m\u001b[43mioargs\u001b[49m\u001b[43m.\u001b[49m\u001b[43mencoding\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 877\u001b[39m \u001b[43m \u001b[49m\u001b[43merrors\u001b[49m\u001b[43m=\u001b[49m\u001b[43merrors\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 878\u001b[39m \u001b[43m \u001b[49m\u001b[43mnewline\u001b[49m\u001b[43m=\u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[32m 879\u001b[39m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 880\u001b[39m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[32m 881\u001b[39m \u001b[38;5;66;03m# Binary mode\u001b[39;00m\n\u001b[32m 882\u001b[39m handle = \u001b[38;5;28mopen\u001b[39m(handle, ioargs.mode)\n", "\u001b[31mFileNotFoundError\u001b[39m: [Errno 2] No such file or directory: 'activities_en.csv'" ] } ], "source": [ "df = pd.read_csv(\n", " \"activities_en.csv\",\n", " parse_dates=[\"Activity Date\"], # 日付列を datetime へ\n", " dtype={\n", " \"Distance\": \"float32\",\n", " \"Elapsed Time\": \"int32\",\n", " \"Moving Time\": \"int32\",\n", " }\n", ")" ] }, { "cell_type": "code", "execution_count": 16, "id": "79d66d2c", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | Activity ID | \n", "Activity Date | \n", "Activity Name | \n", "Activity Type | \n", "Description | \n", "Elapsed Time | \n", "Distance | \n", "Max Heart Rate | \n", "Relative Effort | \n", "Commute | \n", "... | \n", "Activity Count | \n", "Step Count | \n", "Carbon Savings | \n", "Pool Length | \n", "Training Load | \n", "Intensity | \n", "Grade Adjusted Pace (Average) | \n", "Timer Time | \n", "Total Cycles | \n", "Media | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "8280988291 | \n", "2022-12-23 06:57:23 | \n", "午後のランニング | \n", "ランニング | \n", "NaN | \n", "1530 | \n", "4.62 | \n", "NaN | \n", "NaN | \n", "False | \n", "... | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
1 | \n", "8286585787 | \n", "2022-12-24 09:57:04 | \n", "夕方の水泳 | \n", "水泳 | \n", "NaN | \n", "4454 | \n", "1150.00 | \n", "NaN | \n", "NaN | \n", "False | \n", "... | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
2 | \n", "8293206227 | \n", "2022-12-26 10:42:37 | \n", "夕方の水泳 | \n", "水泳 | \n", "NaN | \n", "4556 | \n", "550.00 | \n", "NaN | \n", "NaN | \n", "False | \n", "... | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
3 | \n", "8314368113 | \n", "2022-12-31 06:05:56 | \n", "午後のライド | \n", "ライド | \n", "NaN | \n", "1897 | \n", "9.10 | \n", "NaN | \n", "NaN | \n", "False | \n", "... | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
4 | \n", "8330224933 | \n", "2023-01-01 06:53:06 | \n", "午後のライド | \n", "ライド | \n", "NaN | \n", "1222 | \n", "7.62 | \n", "NaN | \n", "NaN | \n", "False | \n", "... | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
5 rows × 94 columns
\n", "\n", " | Activity ID | \n", "Activity Date | \n", "Activity Name | \n", "Activity Type | \n", "Description | \n", "Elapsed Time | \n", "Distance | \n", "Max Heart Rate | \n", "Relative Effort | \n", "Commute | \n", "... | \n", "Training Load | \n", "Intensity | \n", "Grade Adjusted Pace (Average) | \n", "Timer Time | \n", "Total Cycles | \n", "Media | \n", "intensity_level | \n", "training_category | \n", "moving_hr | \n", "trimp | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "8280988291 | \n", "2022-12-23 06:57:23 | \n", "午後のランニング | \n", "ランニング | \n", "NaN | \n", "1530 | \n", "4.62 | \n", "NaN | \n", "NaN | \n", "False | \n", "... | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NoHR | \n", "0.421944 | \n", "NaN | \n", "
1 | \n", "8286585787 | \n", "2022-12-24 09:57:04 | \n", "夕方の水泳 | \n", "水泳 | \n", "NaN | \n", "4454 | \n", "1150.00 | \n", "NaN | \n", "NaN | \n", "False | \n", "... | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NoHR | \n", "0.446111 | \n", "NaN | \n", "
2 | \n", "8293206227 | \n", "2022-12-26 10:42:37 | \n", "夕方の水泳 | \n", "水泳 | \n", "NaN | \n", "4556 | \n", "550.00 | \n", "NaN | \n", "NaN | \n", "False | \n", "... | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NoHR | \n", "0.400278 | \n", "NaN | \n", "
3 | \n", "8314368113 | \n", "2022-12-31 06:05:56 | \n", "午後のライド | \n", "ライド | \n", "NaN | \n", "1897 | \n", "9.10 | \n", "NaN | \n", "NaN | \n", "False | \n", "... | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NoHR | \n", "0.454722 | \n", "NaN | \n", "
4 | \n", "8330224933 | \n", "2023-01-01 06:53:06 | \n", "午後のライド | \n", "ライド | \n", "NaN | \n", "1222 | \n", "7.62 | \n", "NaN | \n", "NaN | \n", "False | \n", "... | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NoHR | \n", "0.325278 | \n", "NaN | \n", "
5 rows × 98 columns
\n", "\n", " | year | \n", "week | \n", "Activity Type | \n", "total_dur_hr | \n", "dist_km | \n", "trimp_sum | \n", "
---|---|---|---|---|---|---|
0 | \n", "2022 | \n", "51 | \n", "ランニング | \n", "0.421944 | \n", "0.00462 | \n", "0.0 | \n", "
1 | \n", "2022 | \n", "51 | \n", "水泳 | \n", "0.446111 | \n", "1.15000 | \n", "0.0 | \n", "
2 | \n", "2022 | \n", "52 | \n", "ライド | \n", "0.454722 | \n", "0.00910 | \n", "0.0 | \n", "
3 | \n", "2022 | \n", "52 | \n", "水泳 | \n", "0.400278 | \n", "0.55000 | \n", "0.0 | \n", "
4 | \n", "2023 | \n", "1 | \n", "ウェイトトレーニング | \n", "1.250278 | \n", "0.00000 | \n", "0.0 | \n", "
\n", " | Activity ID | \n", "Activity Date | \n", "Activity Name | \n", "Activity Type | \n", "Description | \n", "Elapsed Time | \n", "Distance | \n", "Max Heart Rate | \n", "Relative Effort | \n", "Commute | \n", "... | \n", "Training Load | \n", "Intensity | \n", "Grade Adjusted Pace (Average) | \n", "Timer Time | \n", "Total Cycles | \n", "Media | \n", "intensity_level | \n", "training_category | \n", "moving_hr | \n", "trimp | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "8280988291 | \n", "2022-12-23 06:57:23 | \n", "午後のランニング | \n", "ランニング | \n", "NaN | \n", "1530 | \n", "4.62 | \n", "NaN | \n", "NaN | \n", "False | \n", "... | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NoHR | \n", "0.421944 | \n", "NaN | \n", "
1 | \n", "8286585787 | \n", "2022-12-24 09:57:04 | \n", "夕方の水泳 | \n", "水泳 | \n", "NaN | \n", "4454 | \n", "1150.00 | \n", "NaN | \n", "NaN | \n", "False | \n", "... | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NoHR | \n", "0.446111 | \n", "NaN | \n", "
2 | \n", "8293206227 | \n", "2022-12-26 10:42:37 | \n", "夕方の水泳 | \n", "水泳 | \n", "NaN | \n", "4556 | \n", "550.00 | \n", "NaN | \n", "NaN | \n", "False | \n", "... | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NoHR | \n", "0.400278 | \n", "NaN | \n", "
3 | \n", "8314368113 | \n", "2022-12-31 06:05:56 | \n", "午後のライド | \n", "ライド | \n", "NaN | \n", "1897 | \n", "9.10 | \n", "NaN | \n", "NaN | \n", "False | \n", "... | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NoHR | \n", "0.454722 | \n", "NaN | \n", "
4 | \n", "8330224933 | \n", "2023-01-01 06:53:06 | \n", "午後のライド | \n", "ライド | \n", "NaN | \n", "1222 | \n", "7.62 | \n", "NaN | \n", "NaN | \n", "False | \n", "... | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NoHR | \n", "0.325278 | \n", "NaN | \n", "
5 rows × 98 columns
\n", "