|
import os |
|
|
|
import datasets |
|
import h5py |
|
import hdf5plugin |
|
import pandas as pd |
|
import pyarrow |
|
|
|
pyarrow.PyExtensionType.set_auto_load(True) |
|
|
|
_CITATION = """\ |
|
@misc{cambrin2025texttoremotesensingimageretrievalrgbsources, |
|
title={Text-to-Remote-Sensing-Image Retrieval beyond RGB Sources}, |
|
author={Daniele Rege Cambrin and Lorenzo Vaiani and Giuseppe Gallipoli and Luca Cagliero and Paolo Garza}, |
|
year={2025}, |
|
eprint={2507.10403}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV}, |
|
url={https://arxiv.org/abs/2507.10403}, |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
CrisisLandMark is a large-scale, multimodal corpus for Text-to-Remote-Sensing-Image Retrieval (T2RSIR). |
|
It contains over 647,000 Sentinel-1 (SAR) and Sentinel-2 (multispectral optical) images enriched with |
|
structured textual and geospatial annotations. The dataset is designed to move beyond standard RGB imagery, |
|
enabling the development of retrieval systems that can leverage the rich physical information from different |
|
satellite sensors for applications in Land Use/Land Cover (LULC) mapping and crisis management. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/DarthReca/closp" |
|
|
|
_LICENSE = "Creative Commons Attribution Non Commercial 4.0" |
|
|
|
|
|
_SATELLITE_DATASETS = { |
|
"s2": ["benv2s2", "cabuar", "sen2flood"], |
|
"s1": ["benv2s1", "mmflood", "sen1flood", "quakeset"], |
|
} |
|
|
|
_URLS = {"main": "crisislandmark.h5", "metadata": "metadata.parquet"} |
|
|
|
|
|
class CrisisLandMarkConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for CrisisLandMark.""" |
|
|
|
def __init__(self, satellite_type, **kwargs): |
|
""" |
|
Args: |
|
satellite_type (str): Type of satellite data to load ('s1', 's2', or 'all'). |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(CrisisLandMarkConfig, self).__init__(**kwargs) |
|
self.satellite_type = satellite_type |
|
|
|
|
|
class CrisisLandMark(datasets.GeneratorBasedBuilder): |
|
"""CrisisLandMark Dataset.""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
|
|
BUILDER_CONFIGS = [ |
|
CrisisLandMarkConfig( |
|
name="s1", |
|
version=VERSION, |
|
description="Load only Sentinel-1 (SAR) images.", |
|
satellite_type="s1", |
|
), |
|
CrisisLandMarkConfig( |
|
name="s2", |
|
version=VERSION, |
|
description="Load only Sentinel-2 (Optical) images.", |
|
satellite_type="s2", |
|
), |
|
CrisisLandMarkConfig( |
|
name="all", |
|
version=VERSION, |
|
description="Load all images (Sentinel-1 and Sentinel-2).", |
|
satellite_type="all", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "s2" |
|
|
|
def _info(self): |
|
|
|
features = datasets.Features( |
|
{ |
|
"key": datasets.Value("string"), |
|
"image": datasets.Array3D(shape=(None, 120, 120), dtype="float32"), |
|
"coords": datasets.Array3D(shape=(2, 120, 120), dtype="float32"), |
|
"labels": datasets.Sequence(datasets.Value("string")), |
|
"crs": datasets.Value("int64"), |
|
"timestamp": datasets.Value("string"), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
files = dl_manager.download(_URLS) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"split": "train"} | files, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"split": "corpus"} | files, |
|
), |
|
] |
|
|
|
def _generate_examples(self, split, metadata, main, **kwargs): |
|
"""Yields examples.""" |
|
|
|
|
|
metadata_df = pd.read_parquet(metadata) |
|
metadata_df = metadata_df[metadata_df["split"] == split] |
|
|
|
|
|
satellite_type = self.config.satellite_type |
|
if satellite_type != "all": |
|
satellite_filter = "|".join(_SATELLITE_DATASETS[satellite_type]) |
|
metadata_df = metadata_df[ |
|
metadata_df["key"].str.contains(satellite_filter, regex=True) |
|
] |
|
|
|
sample_keys = metadata_df[["key", "labels"]].to_records(index=False) |
|
|
|
with h5py.File(main, "r") as f: |
|
for key, labels in sample_keys: |
|
sample_group = f[key] |
|
|
|
|
|
image_np = sample_group["image"][:].astype("float32") |
|
coords_np = sample_group["coords"][:].astype("float32") |
|
|
|
|
|
crs = sample_group.attrs["crs"] |
|
timestamp = sample_group.attrs["timestamp"] |
|
|
|
sample = { |
|
"key": key, |
|
"image": image_np, |
|
"coords": coords_np, |
|
"labels": list(labels), |
|
"crs": crs, |
|
"timestamp": timestamp, |
|
} |
|
|
|
yield (key, sample) |
|
|