import os import datasets import h5py import hdf5plugin import pandas as pd import pyarrow pyarrow.PyExtensionType.set_auto_load(True) _CITATION = """\ @misc{cambrin2025texttoremotesensingimageretrievalrgbsources, title={Text-to-Remote-Sensing-Image Retrieval beyond RGB Sources}, author={Daniele Rege Cambrin and Lorenzo Vaiani and Giuseppe Gallipoli and Luca Cagliero and Paolo Garza}, year={2025}, eprint={2507.10403}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2507.10403}, } """ _DESCRIPTION = """\ CrisisLandMark is a large-scale, multimodal corpus for Text-to-Remote-Sensing-Image Retrieval (T2RSIR). It contains over 647,000 Sentinel-1 (SAR) and Sentinel-2 (multispectral optical) images enriched with structured textual and geospatial annotations. The dataset is designed to move beyond standard RGB imagery, enabling the development of retrieval systems that can leverage the rich physical information from different satellite sensors for applications in Land Use/Land Cover (LULC) mapping and crisis management. """ _HOMEPAGE = "https://github.com/DarthReca/closp" # Replace with your actual project page if different _LICENSE = "Creative Commons Attribution Non Commercial 4.0" # Define the satellite data sources as in the original script _SATELLITE_DATASETS = { "s2": ["benv2s2", "cabuar", "sen2flood"], "s1": ["benv2s1", "mmflood", "sen1flood", "quakeset"], } _URLS = {"main": "crisislandmark.h5", "metadata": "metadata.parquet"} class CrisisLandMarkConfig(datasets.BuilderConfig): """BuilderConfig for CrisisLandMark.""" def __init__(self, satellite_type, **kwargs): """ Args: satellite_type (str): Type of satellite data to load ('s1', 's2', or 'all'). **kwargs: keyword arguments forwarded to super. """ super(CrisisLandMarkConfig, self).__init__(**kwargs) self.satellite_type = satellite_type class CrisisLandMark(datasets.GeneratorBasedBuilder): """CrisisLandMark Dataset.""" VERSION = datasets.Version("1.0.0") # Configure for different satellite types BUILDER_CONFIGS = [ CrisisLandMarkConfig( name="s1", version=VERSION, description="Load only Sentinel-1 (SAR) images.", satellite_type="s1", ), CrisisLandMarkConfig( name="s2", version=VERSION, description="Load only Sentinel-2 (Optical) images.", satellite_type="s2", ), CrisisLandMarkConfig( name="all", version=VERSION, description="Load all images (Sentinel-1 and Sentinel-2).", satellite_type="all", ), ] DEFAULT_CONFIG_NAME = "s2" def _info(self): # Define the features of the dataset features = datasets.Features( { "key": datasets.Value("string"), "image": datasets.Array3D(shape=(None, 120, 120), dtype="float32"), "coords": datasets.Array3D(shape=(2, 120, 120), dtype="float32"), "labels": datasets.Sequence(datasets.Value("string")), "crs": datasets.Value("int64"), "timestamp": datasets.Value("string"), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" files = dl_manager.download(_URLS) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"split": "train"} | files, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"split": "corpus"} | files, ), ] def _generate_examples(self, split, metadata, main, **kwargs): """Yields examples.""" # --- Load and filter metadata --- metadata_df = pd.read_parquet(metadata) metadata_df = metadata_df[metadata_df["split"] == split] # Filter by satellite type based on the config satellite_type = self.config.satellite_type if satellite_type != "all": satellite_filter = "|".join(_SATELLITE_DATASETS[satellite_type]) metadata_df = metadata_df[ metadata_df["key"].str.contains(satellite_filter, regex=True) ] sample_keys = metadata_df[["key", "labels"]].to_records(index=False) # Open the HDF5 file once and yield examples with h5py.File(main, "r") as f: for key, labels in sample_keys: sample_group = f[key] # Read data image_np = sample_group["image"][:].astype("float32") coords_np = sample_group["coords"][:].astype("float32") # Read attributes crs = sample_group.attrs["crs"] timestamp = sample_group.attrs["timestamp"] sample = { "key": key, "image": image_np, "coords": coords_np, "labels": list(labels), # Ensure it's a list "crs": crs, "timestamp": timestamp, } yield (key, sample)