Datasets:
v1.0
Browse files- .gitattributes +2 -0
- README.md +117 -3
- data/eval.parquet +3 -0
- data/train.parquet +3 -0
.gitattributes
CHANGED
@@ -57,3 +57,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
57 |
# Video files - compressed
|
58 |
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
59 |
*.webm filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
57 |
# Video files - compressed
|
58 |
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
59 |
*.webm filter=lfs diff=lfs merge=lfs -text
|
60 |
+
data/train.parquet filter=lfs diff=lfs merge=lfs -text
|
61 |
+
data/eval.parquet filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,3 +1,117 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
license: cc-by-4.0
|
5 |
+
task_categories:
|
6 |
+
- time-series-forecasting
|
7 |
+
tags:
|
8 |
+
- fresh-retail
|
9 |
+
- imputation
|
10 |
+
- forecasting
|
11 |
+
size_categories:
|
12 |
+
- 1M<n<10M
|
13 |
+
pretty_name: FreshRetailNet-50K
|
14 |
+
configs:
|
15 |
+
- config_name: default
|
16 |
+
data_files:
|
17 |
+
- split: train
|
18 |
+
path: data/train.parquet
|
19 |
+
- split: eval
|
20 |
+
path: data/eval.parquet
|
21 |
+
---
|
22 |
+
|
23 |
+
# FreshRetailNet-50K
|
24 |
+
|
25 |
+
## Dataset description
|
26 |
+
Our dataset represents the first industrial-grade time series dataset in the fresh retail domain, featuring 20% organically missing values.
|
27 |
+
It includes hourly product sales and stock levels, along with additional information such as discounts, holiday status and weather situation.
|
28 |
+
This dataset is an ideal benchmark for future researches on time series imputation and forecasting techniques.
|
29 |
+
|
30 |
+
|
31 |
+
## Fields' meaning
|
32 |
+
|Field|Type|Description|
|
33 |
+
|:---|:---|:---|
|
34 |
+
|city_id|int64|the encoded city id|
|
35 |
+
|store_id|int64|the encoded store id|
|
36 |
+
|management_group_id|int64|the encoded management group id|
|
37 |
+
|first_category_id|int64|the encoded first category id|
|
38 |
+
|second_category_id|int64|the encoded second category id|
|
39 |
+
|third_category_id|int64|the encoded third category id|
|
40 |
+
|product_id|int64|the encoded product id|
|
41 |
+
|dt|string|the date|
|
42 |
+
|sale_amount|float64|the daily sales data after global normalization (Multiplied by a specific coefficient)|
|
43 |
+
|hours_sale|Sequence(float64)|the hourly sales data after global normalization (Multiplied by a specific coefficient)|
|
44 |
+
|stock_hour6_22_cnt|int32|the number of out-of-stock hours between 6:00 and 22:00|
|
45 |
+
|hours_stock_status|Sequence(int32)|the hourly out-of-stock status|
|
46 |
+
|discount|float64|the discount rate (1.0 means no discount, 0.9 means 10% off)|
|
47 |
+
|holiday_flag|int32|holiday indicator|
|
48 |
+
|activity_flag|int32|activity indicator|
|
49 |
+
|precpt|float64|the total precipitation|
|
50 |
+
|avg_temperature|float64|the average temperature|
|
51 |
+
|avg_humidity|float64|the average humidity|
|
52 |
+
|avg_wind_level|float64|the average wind force|
|
53 |
+
|
54 |
+
### Hierarchical structure
|
55 |
+
- **warehouse**: city_id > store_id
|
56 |
+
- **product category**: management_group_id > first_category_id > second_category_id > third_category_id > product_id
|
57 |
+
|
58 |
+
|
59 |
+
## How to use it
|
60 |
+
|
61 |
+
You can load the dataset with the following lines of code.
|
62 |
+
|
63 |
+
```python
|
64 |
+
from datasets import load_dataset
|
65 |
+
dataset = load_dataset("Dingdong-Inc/FreshRetailNet-50K")
|
66 |
+
print(dataset)
|
67 |
+
DatasetDict({
|
68 |
+
train: Dataset({
|
69 |
+
features: ['city_id', 'store_id', 'management_group_id', 'first_category_id', 'second_category_id', 'third_category_id', 'product_id', 'dt', 'sale_amount', 'hours_sale', 'stock_hour6_22_cnt', 'hours_stock_status', 'discount', 'holiday_flag', 'activity_flag', 'precpt', 'avg_temperature', 'avg_humidity', 'avg_wind_level'],
|
70 |
+
num_rows: 4500000
|
71 |
+
})
|
72 |
+
eval: Dataset({
|
73 |
+
features: ['city_id', 'store_id', 'management_group_id', 'first_category_id', 'second_category_id', 'third_category_id', 'product_id', 'dt', 'sale_amount', 'hours_sale', 'stock_hour6_22_cnt', 'hours_stock_status', 'discount', 'holiday_flag', 'activity_flag', 'precpt', 'avg_temperature', 'avg_humidity', 'avg_wind_level'],
|
74 |
+
num_rows: 350000
|
75 |
+
})
|
76 |
+
})
|
77 |
+
```
|
78 |
+
|
79 |
+
|
80 |
+
## License/Terms of Use
|
81 |
+
|
82 |
+
This dataset is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0) available at https://creativecommons.org/licenses/by/4.0/legalcode.
|
83 |
+
|
84 |
+
**Data Developer:** Dingdong-Inc
|
85 |
+
|
86 |
+
|
87 |
+
### Use Case: <br>
|
88 |
+
Developers researching time series imputation and forecasting techniques. <br>
|
89 |
+
|
90 |
+
### Release Date: <br>
|
91 |
+
05/08/2025 <br>
|
92 |
+
|
93 |
+
|
94 |
+
## Data Version
|
95 |
+
1.0 (05/08/2025)
|
96 |
+
|
97 |
+
|
98 |
+
## Intended use
|
99 |
+
|
100 |
+
The FreshRetailNet-50K Dataset is intended to be freely used by the community to continue to improve time series imputation and forecasting techniques.
|
101 |
+
**However, for each dataset an user elects to use, the user is responsible for checking if the dataset license is fit for the intended purpose**.
|
102 |
+
|
103 |
+
|
104 |
+
## Citation
|
105 |
+
|
106 |
+
If you find the data useful, please cite:
|
107 |
+
```
|
108 |
+
@article{2025freshretailnet-50k,
|
109 |
+
title={FreshRetailNet-50K: A Censored Demand Dataset with Stockout Interventions for Inventory-Aware Forecasting in Fresh Retail},
|
110 |
+
author={Anonymous Author(s)},
|
111 |
+
year={2025},
|
112 |
+
eprint={2505.xxxxx},
|
113 |
+
archivePrefix={arXiv},
|
114 |
+
primaryClass={stat.ML},
|
115 |
+
url={https://arxiv.org/abs/2505.xxxxx},
|
116 |
+
}
|
117 |
+
```
|
data/eval.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b118840664280c6b88bffc84c80ee1f54c05d911e354b7599e5da10995e960e
|
3 |
+
size 8440124
|
data/train.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6706832db892bbae4969c19d87e07975d2543d2ba7d7d4756360654785de5a3d
|
3 |
+
size 106436287
|