JarvisGu commited on
Commit
01a4be6
·
1 Parent(s): 01d12f2
Files changed (4) hide show
  1. .gitattributes +2 -0
  2. README.md +117 -3
  3. data/eval.parquet +3 -0
  4. data/train.parquet +3 -0
.gitattributes CHANGED
@@ -57,3 +57,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
 
 
 
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
60
+ data/train.parquet filter=lfs diff=lfs merge=lfs -text
61
+ data/eval.parquet filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,3 +1,117 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: cc-by-4.0
5
+ task_categories:
6
+ - time-series-forecasting
7
+ tags:
8
+ - fresh-retail
9
+ - imputation
10
+ - forecasting
11
+ size_categories:
12
+ - 1M<n<10M
13
+ pretty_name: FreshRetailNet-50K
14
+ configs:
15
+ - config_name: default
16
+ data_files:
17
+ - split: train
18
+ path: data/train.parquet
19
+ - split: eval
20
+ path: data/eval.parquet
21
+ ---
22
+
23
+ # FreshRetailNet-50K
24
+
25
+ ## Dataset description
26
+ Our dataset represents the first industrial-grade time series dataset in the fresh retail domain, featuring 20% organically missing values.
27
+ It includes hourly product sales and stock levels, along with additional information such as discounts, holiday status and weather situation.
28
+ This dataset is an ideal benchmark for future researches on time series imputation and forecasting techniques.
29
+
30
+
31
+ ## Fields' meaning
32
+ |Field|Type|Description|
33
+ |:---|:---|:---|
34
+ |city_id|int64|the encoded city id|
35
+ |store_id|int64|the encoded store id|
36
+ |management_group_id|int64|the encoded management group id|
37
+ |first_category_id|int64|the encoded first category id|
38
+ |second_category_id|int64|the encoded second category id|
39
+ |third_category_id|int64|the encoded third category id|
40
+ |product_id|int64|the encoded product id|
41
+ |dt|string|the date|
42
+ |sale_amount|float64|the daily sales data after global normalization (Multiplied by a specific coefficient)|
43
+ |hours_sale|Sequence(float64)|the hourly sales data after global normalization (Multiplied by a specific coefficient)|
44
+ |stock_hour6_22_cnt|int32|the number of out-of-stock hours between 6:00 and 22:00|
45
+ |hours_stock_status|Sequence(int32)|the hourly out-of-stock status|
46
+ |discount|float64|the discount rate (1.0 means no discount, 0.9 means 10% off)|
47
+ |holiday_flag|int32|holiday indicator|
48
+ |activity_flag|int32|activity indicator|
49
+ |precpt|float64|the total precipitation|
50
+ |avg_temperature|float64|the average temperature|
51
+ |avg_humidity|float64|the average humidity|
52
+ |avg_wind_level|float64|the average wind force|
53
+
54
+ ### Hierarchical structure
55
+ - **warehouse**: city_id > store_id
56
+ - **product category**: management_group_id > first_category_id > second_category_id > third_category_id > product_id
57
+
58
+
59
+ ## How to use it
60
+
61
+ You can load the dataset with the following lines of code.
62
+
63
+ ```python
64
+ from datasets import load_dataset
65
+ dataset = load_dataset("Dingdong-Inc/FreshRetailNet-50K")
66
+ print(dataset)
67
+ DatasetDict({
68
+ train: Dataset({
69
+ features: ['city_id', 'store_id', 'management_group_id', 'first_category_id', 'second_category_id', 'third_category_id', 'product_id', 'dt', 'sale_amount', 'hours_sale', 'stock_hour6_22_cnt', 'hours_stock_status', 'discount', 'holiday_flag', 'activity_flag', 'precpt', 'avg_temperature', 'avg_humidity', 'avg_wind_level'],
70
+ num_rows: 4500000
71
+ })
72
+ eval: Dataset({
73
+ features: ['city_id', 'store_id', 'management_group_id', 'first_category_id', 'second_category_id', 'third_category_id', 'product_id', 'dt', 'sale_amount', 'hours_sale', 'stock_hour6_22_cnt', 'hours_stock_status', 'discount', 'holiday_flag', 'activity_flag', 'precpt', 'avg_temperature', 'avg_humidity', 'avg_wind_level'],
74
+ num_rows: 350000
75
+ })
76
+ })
77
+ ```
78
+
79
+
80
+ ## License/Terms of Use
81
+
82
+ This dataset is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0) available at https://creativecommons.org/licenses/by/4.0/legalcode.
83
+
84
+ **Data Developer:** Dingdong-Inc
85
+
86
+
87
+ ### Use Case: <br>
88
+ Developers researching time series imputation and forecasting techniques. <br>
89
+
90
+ ### Release Date: <br>
91
+ 05/08/2025 <br>
92
+
93
+
94
+ ## Data Version
95
+ 1.0 (05/08/2025)
96
+
97
+
98
+ ## Intended use
99
+
100
+ The FreshRetailNet-50K Dataset is intended to be freely used by the community to continue to improve time series imputation and forecasting techniques.
101
+ **However, for each dataset an user elects to use, the user is responsible for checking if the dataset license is fit for the intended purpose**.
102
+
103
+
104
+ ## Citation
105
+
106
+ If you find the data useful, please cite:
107
+ ```
108
+ @article{2025freshretailnet-50k,
109
+ title={FreshRetailNet-50K: A Censored Demand Dataset with Stockout Interventions for Inventory-Aware Forecasting in Fresh Retail},
110
+ author={Anonymous Author(s)},
111
+ year={2025},
112
+ eprint={2505.xxxxx},
113
+ archivePrefix={arXiv},
114
+ primaryClass={stat.ML},
115
+ url={https://arxiv.org/abs/2505.xxxxx},
116
+ }
117
+ ```
data/eval.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b118840664280c6b88bffc84c80ee1f54c05d911e354b7599e5da10995e960e
3
+ size 8440124
data/train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6706832db892bbae4969c19d87e07975d2543d2ba7d7d4756360654785de5a3d
3
+ size 106436287