--- license: cc0-1.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* dataset_info: features: - name: experiment_name dtype: string - name: evidence_index dtype: int64 - name: scan_number dtype: int64 - name: sequence dtype: string - name: modified_sequence dtype: string - name: precursor_mz dtype: float64 - name: precursor_recalibrated_mz dtype: float64 - name: precursor_mass dtype: float64 - name: precursor_charge dtype: int64 - name: retention_time dtype: float64 - name: mz_array sequence: float32 - name: intensity_array sequence: float32 splits: - name: train num_bytes: 3370985593 num_examples: 2132847 - name: validation num_bytes: 413243959 num_examples: 257187 - name: test num_bytes: 421581021 num_examples: 265369 download_size: 3944832530 dataset_size: 4205810573 --- # Dataset Card for High-Confidence ProteomeTools Dataset used to train, validate and test InstaNovo and InstaNovo+. ## Dataset Description - **Repository:** [InstaNovo](https://github.com/instadeepai/InstaNovo) - **Paper:** [InstaNovo enables diffusion-powered de novo peptide sequencing in large-scale proteomics experiments](https://www.nature.com/articles/s42256-025-01019-5) ### Dataset Summary This dataset consists of the highest-confidence peptide-spectral matches from three parts of the [ProteomeTools](https://www.proteometools.org/) datasets. The original datasets may be found in the PRIDE repository with identifiers: - `PXD004732` (Part I) - `PXD010595` (Part II) - `PXD021013` (Part III) The dataset has been split on unique peptides with the following ratio: - 80% train - 10% validation - 10% test ## Dataset Structure The dataset is tabular, where each row corresponds to a labelled MS2 spectra. - `sequence (string)` \ The target peptide sequence excluding post-translational modifications - `modified_sequence (string)` \ The target peptide sequence including post-translational modifications - `precursor_mz (float64)` \ The mass-to-charge of the precursor (from MS1) - `charge (int64)` \ The charge of the precursor (from MS1) - `mz_array (list[float64])` \ The mass-to-charge values of the MS2 spectrum - `mz_array (list[float32])` \ The intensity values of the MS2 spectrum MaxQuant additional columns: - `experiment_name (string)` - `evidence_index (in64)` - `scan_number (in64)` - `precursor_recalibrated_mz (float64)` ## Citation Information If you use this dataset, please cite the original authors. The original [ProteomeTools](https://www.proteometools.org/) data is available on [PRIDE](https://www.ebi.ac.uk/pride/) with identifiers `PXD004732` (Part I), `PXD010595` (Part II), and `PXD021013` (Part III). Please also cite InstaNovo: ```bibtex @article{eloff_kalogeropoulos_2025_instanovo, title = {InstaNovo enables diffusion-powered de novo peptide sequencing in large-scale proteomics experiments}, author = {Eloff, Kevin and Kalogeropoulos, Konstantinos and Mabona, Amandla and Morell, Oliver and Catzel, Rachel and Rivera-de-Torre, Esperanza and Berg Jespersen, Jakob and Williams, Wesley and van Beljouw, Sam P. B. and Skwark, Marcin J. and Laustsen, Andreas Hougaard and Brouns, Stan J. J. and Ljungars, Anne and Schoof, Erwin M. and Van Goey, Jeroen and auf dem Keller, Ulrich and Beguir, Karim and Lopez Carranza, Nicolas and Jenkins, Timothy P.}, year = 2025, month = {Mar}, day = 31, journal = {Nature Machine Intelligence}, doi = {10.1038/s42256-025-01019-5}, issn = {2522-5839}, url = {https://doi.org/10.1038/s42256-025-01019-5} } ```