|
import os
|
|
import argparse
|
|
import cv2
|
|
import numpy as np
|
|
import json
|
|
from datetime import datetime
|
|
from skimage.metrics import peak_signal_noise_ratio as psnr
|
|
from skimage.metrics import structural_similarity as ssim
|
|
import glob
|
|
|
|
def find_single_image(directory, pattern):
|
|
"""Find single image file in specified directory using glob pattern."""
|
|
files = glob.glob(os.path.join(directory, pattern))
|
|
if len(files) == 1:
|
|
return files[0]
|
|
elif len(files) == 0:
|
|
print(f"⚠️ No matching {pattern} image found in {directory}")
|
|
else:
|
|
print(f"⚠️ Multiple matching {pattern} images found in {directory}")
|
|
return None
|
|
|
|
def evaluate_quality(pred_dir, gt_dir, threshold_ssim=0.65, threshold_psnr=15, result_file=None):
|
|
result = {
|
|
"Process": True,
|
|
"Result": False,
|
|
"TimePoint": datetime.now().strftime("%Y-%m-%dT%H:%M:%S"),
|
|
"comments": ""
|
|
}
|
|
|
|
print(f"\nStarting evaluation task:")
|
|
print(f"Predicted images path: {pred_dir}")
|
|
print(f"Ground truth images path: {gt_dir}\n")
|
|
|
|
if not os.path.exists(pred_dir) or not os.path.exists(gt_dir):
|
|
result["Process"] = False
|
|
result["comments"] = "Path does not exist"
|
|
print("❌ Path does not exist")
|
|
save_result(result_file, result)
|
|
return
|
|
|
|
pred_path = find_single_image(pred_dir, "output.*")
|
|
gt_path = find_single_image(gt_dir, "gt.*")
|
|
|
|
if not pred_path or not gt_path:
|
|
result["Process"] = False
|
|
result["comments"] = "Predicted or GT image missing or multiple matches"
|
|
save_result(result_file, result)
|
|
return
|
|
|
|
pred_img = cv2.imread(pred_path)
|
|
gt_img = cv2.imread(gt_path)
|
|
|
|
if pred_img is None or gt_img is None:
|
|
result["Process"] = False
|
|
result["comments"] = "Failed to read images"
|
|
print("⚠️ Failed to read images")
|
|
save_result(result_file, result)
|
|
return
|
|
|
|
pred_img = cv2.resize(pred_img, (gt_img.shape[1], gt_img.shape[0]))
|
|
pred_gray = cv2.cvtColor(pred_img, cv2.COLOR_BGR2GRAY)
|
|
gt_gray = cv2.cvtColor(gt_img, cv2.COLOR_BGR2GRAY)
|
|
|
|
ssim_val = ssim(gt_gray, pred_gray)
|
|
psnr_val = psnr(gt_gray, pred_gray)
|
|
|
|
print(f"Structural Similarity (SSIM): {ssim_val:.4f}")
|
|
print(f"Peak Signal-to-Noise Ratio (PSNR): {psnr_val:.2f}")
|
|
|
|
if ssim_val >= threshold_ssim and psnr_val >= threshold_psnr:
|
|
result["Result"] = True
|
|
result["comments"] = f"Test passed, SSIM={ssim_val:.4f}, PSNR={psnr_val:.2f}"
|
|
print("✅ Restoration quality meets requirements")
|
|
else:
|
|
result["Result"] = False
|
|
result["comments"] = f"Test failed, SSIM={ssim_val:.4f}, PSNR={psnr_val:.2f}"
|
|
print("❌ Restoration quality does not meet requirements")
|
|
|
|
save_result(result_file, result)
|
|
|
|
def save_result(result_file, result):
|
|
if result_file:
|
|
try:
|
|
with open(result_file, "a", encoding="utf-8") as f:
|
|
f.write(json.dumps(result, ensure_ascii=False) + "\n")
|
|
print(f"[Success] Output file: {result_file}")
|
|
except Exception as e:
|
|
print(f"⚠️ Failed to write result file: {e}")
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--output', type=str, required=True, help='Predicted results folder')
|
|
parser.add_argument('--groundtruth', type=str, required=True, help='Original GT folder')
|
|
parser.add_argument('--result', type=str, required=True, help='Output JSONL file for results')
|
|
args = parser.parse_args()
|
|
|
|
evaluate_quality(args.output, args.groundtruth, result_file=args.result) |