Nicole-Yi's picture
Upload 103 files
4a5e815 verified
import argparse
import csv
import os
import json
from datetime import datetime
def check_file_valid(file_path: str) -> bool:
if not os.path.isfile(file_path):
print(f"❌ File does not exist: {file_path}")
return False
if os.path.getsize(file_path) == 0:
print(f"❌ File is empty: {file_path}")
return False
return True
def evaluate_scraping(pred_file: str, gt_file: str, threshold: float = 0.95, result_file: str = None):
process_success = check_file_valid(pred_file) and check_file_valid(gt_file)
if not process_success:
result = {
"Process": False,
"Result": False,
"TimePoint": datetime.now().isoformat(),
"comments": f"❌ File does not exist or is empty: pred={pred_file}, gt={gt_file}"
}
if result_file:
with open(result_file, "a", encoding="utf-8") as f:
f.write(json.dumps(result, ensure_ascii=False, default=str) + "\n")
return False
# Read prediction file
preds = []
with open(pred_file, 'r', encoding='utf-8') as f:
reader = csv.DictReader(f)
for row in reader:
preds.append(row)
# Read ground truth
gts = []
with open(gt_file, 'r', encoding='utf-8') as f:
reader = csv.DictReader(f)
for row in reader:
gts.append(row)
if len(preds) != len(gts):
print(
f"⚠️ Prediction and ground truth counts mismatch (predicted {len(preds)}, truth {len(gts)}), comparing minimum count.")
num_samples = min(len(preds), len(gts))
fields = preds[0].keys() # Assume column names match
correct_counts = {field: 0 for field in fields}
# Calculate accuracy per column
for i in range(num_samples):
for field in fields:
if preds[i][field] == gts[i][field]:
correct_counts[field] += 1
accuracies = {field: correct_counts[field] / num_samples for field in fields}
# Print accuracy per column
for field, acc in accuracies.items():
print(f"Field '{field}' accuracy: {acc:.4f}")
# Check if all fields meet threshold
success = all(acc >= threshold for acc in accuracies.values())
if success:
print("✅ Validation passed: All columns accuracy >95%")
else:
print("❌ Validation failed: Some columns accuracy <95%")
# Save results
if result_file:
result = {
"Process": True,
"Result": success,
"TimePoint": datetime.now().isoformat(),
"comments": f"Field-level accuracy: {accuracies}, {'meets' if success else 'does not meet'} 95% threshold"
}
with open(result_file, "a", encoding="utf-8") as f:
f.write(json.dumps(result, ensure_ascii=False, default=str) + "\n")
return accuracies, success
def main():
parser = argparse.ArgumentParser(description="Evaluate field-level accuracy of Scrapy crawl results")
parser.add_argument('--output', type=str, required=True, help="Prediction results (CSV) path")
parser.add_argument('--groundtruth', type=str, required=True, help="Ground truth data (CSV) path")
parser.add_argument('--threshold', type=float, default=0.95, help="Field accuracy threshold")
parser.add_argument('--result', type=str, required=False, help="Output JSONL file path for results")
args = parser.parse_args()
evaluate_scraping(args.output, args.groundtruth, args.threshold, args.result)
if __name__ == "__main__":
main()