|
import jiwer
|
|
import argparse
|
|
import os
|
|
import json
|
|
from datetime import datetime
|
|
|
|
|
|
def evaluate_speech_recognition(output_path, groundtruth_path, wer_threshold=0.3):
|
|
"""
|
|
Evaluate speech recognition performance using WER (Word Error Rate) metric.
|
|
|
|
Args:
|
|
output_path (str): Path to speech recognition output text file
|
|
groundtruth_path (str): Path to ground truth text file
|
|
wer_threshold (float): WER threshold (default 0.3, i.e., 30%)
|
|
|
|
Returns:
|
|
dict: Dictionary containing WER value and evaluation results
|
|
"""
|
|
|
|
|
|
def read_text_file(file_path):
|
|
try:
|
|
with open(file_path, 'r', encoding='utf-8') as f:
|
|
text = f.read().strip()
|
|
|
|
if not text:
|
|
raise ValueError(f"File is empty: {file_path}")
|
|
return text
|
|
except UnicodeDecodeError:
|
|
raise ValueError(f"File encoding error, expected UTF-8: {file_path}")
|
|
except Exception as e:
|
|
raise ValueError(f"Failed to read file {file_path}: {str(e)}")
|
|
|
|
|
|
try:
|
|
output_text = read_text_file(output_path)
|
|
groundtruth_text = read_text_file(groundtruth_path)
|
|
except Exception as e:
|
|
return {
|
|
'wer': None,
|
|
'threshold': wer_threshold,
|
|
'is_acceptable': False,
|
|
'message': f"Text loading failed: {str(e)}"
|
|
}
|
|
|
|
|
|
print(f"Raw groundtruth: '{groundtruth_text}'")
|
|
print(f"Raw output: '{output_text}'")
|
|
|
|
|
|
if not groundtruth_text.strip() or not output_text.strip():
|
|
return {
|
|
'wer': None,
|
|
'threshold': wer_threshold,
|
|
'is_acceptable': False,
|
|
'message': f"Empty text (Groundtruth: '{groundtruth_text}', Output: '{output_text}')"
|
|
}
|
|
|
|
|
|
try:
|
|
|
|
wer = jiwer.wer(
|
|
groundtruth_text.lower(),
|
|
output_text.lower()
|
|
)
|
|
except Exception as e:
|
|
return {
|
|
'wer': None,
|
|
'threshold': wer_threshold,
|
|
'is_acceptable': False,
|
|
'message': f"WER calculation failed: {str(e)} (Groundtruth: '{groundtruth_text}', Output: '{output_text}')"
|
|
}
|
|
|
|
|
|
is_acceptable = wer <= wer_threshold
|
|
result = {
|
|
'wer': float(wer),
|
|
'threshold': float(wer_threshold),
|
|
'is_acceptable': is_acceptable,
|
|
'message': f"WER: {wer * 100:.2f}%, {'Acceptable' if is_acceptable else 'Unacceptable'} (Threshold: {wer_threshold * 100:.2f}%)"
|
|
}
|
|
|
|
return result
|
|
|
|
|
|
def check_file_validity(file_path):
|
|
"""Check if file exists, is not empty, and has correct format"""
|
|
if not os.path.exists(file_path):
|
|
return False, f"File not found: {file_path}"
|
|
if os.path.getsize(file_path) == 0:
|
|
return False, f"File is empty: {file_path}"
|
|
if not file_path.endswith('.txt'):
|
|
return False, f"Invalid file format, expected .txt: {file_path}"
|
|
return True, ""
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(description="Evaluate speech recognition using WER metric.")
|
|
parser.add_argument('--output', type=str, required=True, help="Path to the speech recognition output text file")
|
|
parser.add_argument('--groundtruth', type=str, required=True, help="Path to the groundtruth text file")
|
|
parser.add_argument('--threshold', type=float, default=0.3, help="WER threshold (default: 0.3, i.e., 30%)")
|
|
parser.add_argument('--result', type=str, default=None, help="Path to JSONL file to store results")
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
comments = []
|
|
process_success = True
|
|
for path in [args.output, args.groundtruth]:
|
|
is_valid, comment = check_file_validity(path)
|
|
if not is_valid:
|
|
process_success = False
|
|
comments.append(comment)
|
|
|
|
|
|
result_dict = {
|
|
"Process": process_success,
|
|
"Result": False,
|
|
"TimePoint": datetime.now().strftime("%Y-%m-%dT%H:%M:%S"),
|
|
"comments": ""
|
|
}
|
|
|
|
|
|
if not process_success:
|
|
result_dict["comments"] = "; ".join(comments)
|
|
else:
|
|
try:
|
|
|
|
result = evaluate_speech_recognition(
|
|
output_path=args.output,
|
|
groundtruth_path=args.groundtruth,
|
|
wer_threshold=args.threshold
|
|
)
|
|
|
|
|
|
result_dict["Result"] = result['is_acceptable']
|
|
result_dict["comments"] = result['message']
|
|
print(result['message'])
|
|
except Exception as e:
|
|
result_dict["Result"] = False
|
|
result_dict["comments"] = f"Evaluation failed: {str(e)}"
|
|
comments.append(str(e))
|
|
|
|
|
|
if args.result:
|
|
try:
|
|
|
|
serializable_dict = {
|
|
"Process": bool(result_dict["Process"]),
|
|
"Result": bool(result_dict["Result"]),
|
|
"TimePoint": result_dict["TimePoint"],
|
|
"comments": result_dict["comments"]
|
|
}
|
|
with open(args.result, 'a', encoding='utf-8') as f:
|
|
json_line = json.dumps(serializable_dict, ensure_ascii=False)
|
|
f.write(json_line + '\n')
|
|
except Exception as e:
|
|
print(f"Failed to save results to {args.result}: {str(e)}")
|
|
raise
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main() |