|
|
|
import os
|
|
import sys
|
|
import argparse
|
|
import json
|
|
import datetime
|
|
import cv2
|
|
import numpy as np
|
|
import torch
|
|
import lpips
|
|
from torchvision import transforms
|
|
from PIL import Image, UnidentifiedImageError
|
|
|
|
def verify_image(path, exts=('.png', '.jpg', '.jpeg', '.webp')):
|
|
"""Check if file exists, is not empty, has valid extension, and can be opened by PIL."""
|
|
if not os.path.isfile(path):
|
|
return False, f'File does not exist: {path}'
|
|
if os.path.getsize(path) == 0:
|
|
return False, f'File is empty: {path}'
|
|
if not path.lower().endswith(exts):
|
|
return False, f'Unsupported format: {path}'
|
|
try:
|
|
img = Image.open(path)
|
|
img.verify()
|
|
except (UnidentifiedImageError, Exception) as e:
|
|
return False, f'Cannot read image: {path} ({e})'
|
|
return True, ''
|
|
|
|
def load_tensor(path):
|
|
"""Load and normalize to [-1,1] Tensor as in original script"""
|
|
img = cv2.imread(path, cv2.IMREAD_COLOR)
|
|
if img is None:
|
|
raise RuntimeError(f'cv2 read failed: {path}')
|
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
|
t = transforms.ToTensor()(img) * 2 - 1
|
|
return t.unsqueeze(0)
|
|
|
|
if __name__ == "__main__":
|
|
p = argparse.ArgumentParser(description='Automated image quality evaluation script')
|
|
p.add_argument('--groundtruth', required=True, help='Path to original content image')
|
|
p.add_argument('--output', required=True, help='Path to stylized output image')
|
|
p.add_argument('--lpips-thresh', type=float, default=0.5, help='LPIPS threshold (>= passes)')
|
|
p.add_argument('--result', required=True, help='Result JSONL file path, append mode')
|
|
args = p.parse_args()
|
|
|
|
process = True
|
|
comments = []
|
|
|
|
|
|
for tag, path in [('groundtruth', args.groundtruth), ('output', args.output)]:
|
|
ok, msg = verify_image(path)
|
|
if not ok:
|
|
process = False
|
|
comments.append(f'[{tag}] {msg}')
|
|
|
|
|
|
lpips_pass = False
|
|
lpips_val = None
|
|
if process:
|
|
try:
|
|
|
|
img_c = load_tensor(args.groundtruth)
|
|
img_o = load_tensor(args.output)
|
|
|
|
|
|
_, _, h0, w0 = img_c.shape
|
|
_, _, h1, w1 = img_o.shape
|
|
nh, nw = min(h0,h1), min(w0,w1)
|
|
if (h0,w0)!=(nh,nw):
|
|
img_c = torch.nn.functional.interpolate(img_c, size=(nh,nw), mode='bilinear', align_corners=False)
|
|
if (h1,w1)!=(nh,nw):
|
|
img_o = torch.nn.functional.interpolate(img_o, size=(nh,nw), mode='bilinear', align_corners=False)
|
|
|
|
loss_fn = lpips.LPIPS(net='vgg').to(torch.device('cpu'))
|
|
with torch.no_grad():
|
|
lpips_val = float(loss_fn(img_c, img_o).item())
|
|
lpips_pass = lpips_val >= args.lpips_thresh
|
|
|
|
comments.append(f'LPIPS={lpips_val:.4f} (>= {args.lpips_thresh} → {"OK" if lpips_pass else "FAIL"})')
|
|
|
|
except Exception as e:
|
|
process = False
|
|
comments.append(f'Metric calculation error: {e}')
|
|
|
|
|
|
result_flag = (process and lpips_pass)
|
|
entry = {
|
|
"Process": process,
|
|
"Result": result_flag,
|
|
"TimePoint": datetime.datetime.now().isoformat(sep='T', timespec='seconds'),
|
|
"comments": "; ".join(comments)
|
|
}
|
|
os.makedirs(os.path.dirname(args.result) or '.', exist_ok=True)
|
|
with open(args.result, 'a', encoding='utf-8') as f:
|
|
f.write(json.dumps(entry, ensure_ascii=False, default=str) + "\n")
|
|
|
|
|
|
print("\nTest complete - Final status: " + ("PASS" if result_flag else "FAIL")) |