|
import argparse
|
|
import numpy as np
|
|
from PIL import Image
|
|
import json
|
|
import os
|
|
from datetime import datetime
|
|
from scipy.ndimage import sobel
|
|
from skimage.metrics import structural_similarity as ssim
|
|
from skimage.metrics import peak_signal_noise_ratio as psnr
|
|
|
|
|
|
def compute_edge_intensity(img_array):
|
|
"""
|
|
Calculate edge intensity (Sobel gradient) of an image.
|
|
|
|
Args:
|
|
img_array (np.ndarray): Input image (RGB or grayscale)
|
|
|
|
Returns:
|
|
np.ndarray: Edge intensity map
|
|
"""
|
|
|
|
if len(img_array.shape) == 3:
|
|
gray = np.mean(img_array, axis=2).astype(np.float32)
|
|
else:
|
|
gray = img_array.astype(np.float32)
|
|
|
|
|
|
grad_x = sobel(gray, axis=1)
|
|
grad_y = sobel(gray, axis=0)
|
|
edge_intensity = np.sqrt(grad_x ** 2 + grad_y ** 2)
|
|
return edge_intensity
|
|
|
|
|
|
def evaluate_super_resolution(input_path, output_path):
|
|
"""
|
|
Evaluate super-resolution quality without pretrained model.
|
|
|
|
Args:
|
|
input_path (str): Path to input low-resolution image
|
|
output_path (str): Path to output super-resolution image
|
|
|
|
Returns:
|
|
dict: Evaluation results containing PSNR, ESI, SSIM and success status
|
|
"""
|
|
|
|
input_img = Image.open(input_path).convert('RGB')
|
|
output_img = Image.open(output_path).convert('RGB')
|
|
|
|
|
|
input_array = np.array(input_img)
|
|
output_array = np.array(output_img)
|
|
|
|
|
|
input_h, input_w = input_array.shape[:2]
|
|
output_h, output_w = output_array.shape[:2]
|
|
if output_h != 2 * input_h or output_w != 2 * input_w:
|
|
return {
|
|
'PSNR': 0.0,
|
|
'PSNR Threshold': 20.0,
|
|
'ESI (Edge Strength Improvement)': 0.0,
|
|
'ESI Threshold': 1.2,
|
|
'SSIM': 0.0,
|
|
'SSIM Threshold': 0.8,
|
|
'Success': False,
|
|
'Error': f"Output resolution ({output_w}x{output_h}) is not 2x input ({input_w}x{input_h})"
|
|
}
|
|
|
|
|
|
upsampled_img = input_img.resize((output_w, output_h), Image.BILINEAR)
|
|
upsampled_array = np.array(upsampled_img)
|
|
|
|
|
|
psnr_value = psnr(upsampled_array, output_array, data_range=255)
|
|
|
|
|
|
input_edge = compute_edge_intensity(upsampled_array)
|
|
output_edge = compute_edge_intensity(output_array)
|
|
|
|
|
|
input_edge_img = Image.fromarray((input_edge / input_edge.max() * 255).astype(np.uint8))
|
|
output_edge_img = Image.fromarray((output_edge / output_edge.max() * 255).astype(np.uint8))
|
|
input_edge_img.save('input_edge.png')
|
|
output_edge_img.save('output_edge.png')
|
|
|
|
|
|
input_edge_mean = np.mean(input_edge)
|
|
output_edge_mean = np.mean(output_edge)
|
|
esi = output_edge_mean / (input_edge_mean + 1e-10)
|
|
|
|
|
|
h, w = output_array.shape[:2]
|
|
min_side = min(h, w)
|
|
win = min(7, min_side)
|
|
if win % 2 == 0:
|
|
win -= 1
|
|
win = max(win, 3)
|
|
try:
|
|
ssim_value = ssim(
|
|
upsampled_array,
|
|
output_array,
|
|
data_range=255,
|
|
win_size=win,
|
|
channel_axis=-1
|
|
)
|
|
except ValueError:
|
|
ssim_value = ssim(
|
|
upsampled_array,
|
|
output_array,
|
|
data_range=255,
|
|
channel_axis=-1
|
|
)
|
|
|
|
|
|
|
|
psnr_threshold = 18.0
|
|
esi_threshold = 1.2
|
|
ssim_threshold = 0.8
|
|
success = psnr_value >= psnr_threshold and esi >= esi_threshold and ssim_value >= ssim_threshold
|
|
|
|
|
|
return {
|
|
'PSNR': psnr_value,
|
|
'PSNR Threshold': psnr_threshold,
|
|
'ESI (Edge Strength Improvement)': esi,
|
|
'ESI Threshold': esi_threshold,
|
|
'SSIM': ssim_value,
|
|
'SSIM Threshold': ssim_threshold,
|
|
'Success': success
|
|
}
|
|
|
|
|
|
def validate_inputs(input_path, output_path):
|
|
"""
|
|
Validate input files exist, are non-empty, and have correct format.
|
|
|
|
Returns:
|
|
tuple: (bool, str) - (is valid, error message or empty string)
|
|
"""
|
|
try:
|
|
|
|
if not os.path.exists(input_path):
|
|
return False, f"Input file {input_path} does not exist."
|
|
if not os.path.exists(output_path):
|
|
return False, f"Output file {output_path} does not exist."
|
|
|
|
|
|
if os.path.getsize(input_path) == 0:
|
|
return False, f"Input file {input_path} is empty."
|
|
if os.path.getsize(output_path) == 0:
|
|
return False, f"Output file {output_path} is empty."
|
|
|
|
|
|
try:
|
|
with Image.open(input_path) as img:
|
|
img.verify()
|
|
with Image.open(output_path) as img:
|
|
img.verify()
|
|
except Exception as e:
|
|
return False, f"Invalid image format: {str(e)}"
|
|
|
|
return True, ""
|
|
except Exception as e:
|
|
return False, f"Validation error: {str(e)}"
|
|
|
|
|
|
def save_result_to_jsonl(result_path, process, result, comments):
|
|
"""
|
|
Save results to JSONL file.
|
|
|
|
Args:
|
|
result_path (str): JSONL file path
|
|
process (bool/numpy.bool_): Whether input parameters are valid
|
|
result (bool/numpy.bool_): Whether evaluation succeeded
|
|
comments (str): Additional information
|
|
"""
|
|
time_point = datetime.now().strftime("%Y-%m-%dT%H:%M:%S")
|
|
|
|
record = {
|
|
"Process": bool(process),
|
|
"Result": bool(result),
|
|
"TimePoint": time_point,
|
|
"comments": comments
|
|
}
|
|
|
|
try:
|
|
with open(result_path, 'a', encoding='utf-8') as f:
|
|
json_line = json.dumps(record, ensure_ascii=False)
|
|
f.write(json_line + '\n')
|
|
except Exception as e:
|
|
print(f"Failed to save result to {result_path}: {str(e)}")
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(description='Evaluate super-resolution quality without pretrained model.')
|
|
parser.add_argument('--groundtruth', type=str, required=True, help='Path to input low-resolution image')
|
|
parser.add_argument('--output', type=str, required=True, help='Path to output super-resolution image')
|
|
parser.add_argument('--result', type=str, help='Path to JSONL file to save results')
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
process, comments = validate_inputs(args.groundtruth, args.output)
|
|
|
|
|
|
result_dict = {}
|
|
success = False
|
|
|
|
|
|
if process:
|
|
try:
|
|
result_dict = evaluate_super_resolution(args.groundtruth, args.output)
|
|
success = result_dict.get('Success', False)
|
|
if 'Error' in result_dict:
|
|
comments = result_dict['Error']
|
|
success = False
|
|
else:
|
|
comments = (
|
|
f"PSNR: {result_dict['PSNR']:.3f} "
|
|
f"(Threshold: {result_dict['PSNR Threshold']}), "
|
|
f"ESI: {result_dict['ESI (Edge Strength Improvement)']:.3f} "
|
|
f"(Threshold: {result_dict['ESI Threshold']}), "
|
|
f"SSIM: {result_dict['SSIM']:.3f} "
|
|
f"(Threshold: {result_dict['SSIM Threshold']}), "
|
|
f"Success: {success}"
|
|
)
|
|
if not success:
|
|
comments += ". Possible issues: Low PSNR (poor pixel similarity), low ESI (insufficient edge enhancement), or low SSIM (structural distortion)."
|
|
except Exception as e:
|
|
process = False
|
|
success = False
|
|
comments = f"Evaluation failed: {str(e)}"
|
|
else:
|
|
success = False
|
|
|
|
|
|
print('Evaluation Results:')
|
|
if process and 'Error' not in result_dict:
|
|
for key, value in result_dict.items():
|
|
if key != 'Error':
|
|
print(f'{key}: {value}')
|
|
else:
|
|
print(f'Error: {comments}')
|
|
|
|
|
|
if args.result:
|
|
save_result_to_jsonl(args.result, process, success, comments)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main() |