Nicole-Yi's picture
Upload 103 files
4a5e815 verified
import argparse
import numpy as np
from PIL import Image
import json
import os
from datetime import datetime
from scipy.ndimage import sobel
from skimage.metrics import structural_similarity as ssim
from skimage.metrics import peak_signal_noise_ratio as psnr
def compute_edge_intensity(img_array):
"""
Calculate edge intensity (Sobel gradient) of an image.
Args:
img_array (np.ndarray): Input image (RGB or grayscale)
Returns:
np.ndarray: Edge intensity map
"""
# Convert to grayscale
if len(img_array.shape) == 3:
gray = np.mean(img_array, axis=2).astype(np.float32)
else:
gray = img_array.astype(np.float32)
# Calculate Sobel gradient
grad_x = sobel(gray, axis=1)
grad_y = sobel(gray, axis=0)
edge_intensity = np.sqrt(grad_x ** 2 + grad_y ** 2)
return edge_intensity
def evaluate_super_resolution(input_path, output_path):
"""
Evaluate super-resolution quality without pretrained model.
Args:
input_path (str): Path to input low-resolution image
output_path (str): Path to output super-resolution image
Returns:
dict: Evaluation results containing PSNR, ESI, SSIM and success status
"""
# Load images
input_img = Image.open(input_path).convert('RGB')
output_img = Image.open(output_path).convert('RGB')
# Convert to numpy arrays
input_array = np.array(input_img)
output_array = np.array(output_img)
# Check resolution (expect output to be 2x input)
input_h, input_w = input_array.shape[:2]
output_h, output_w = output_array.shape[:2]
if output_h != 2 * input_h or output_w != 2 * input_w:
return {
'PSNR': 0.0,
'PSNR Threshold': 20.0,
'ESI (Edge Strength Improvement)': 0.0,
'ESI Threshold': 1.2,
'SSIM': 0.0,
'SSIM Threshold': 0.8,
'Success': False,
'Error': f"Output resolution ({output_w}x{output_h}) is not 2x input ({input_w}x{input_h})"
}
# Upsample input image to output resolution (bilinear interpolation) as pseudo-reference
upsampled_img = input_img.resize((output_w, output_h), Image.BILINEAR)
upsampled_array = np.array(upsampled_img)
# Calculate PSNR
psnr_value = psnr(upsampled_array, output_array, data_range=255)
# Calculate edge intensity
input_edge = compute_edge_intensity(upsampled_array)
output_edge = compute_edge_intensity(output_array)
# Save edge intensity maps for debugging
input_edge_img = Image.fromarray((input_edge / input_edge.max() * 255).astype(np.uint8))
output_edge_img = Image.fromarray((output_edge / output_edge.max() * 255).astype(np.uint8))
input_edge_img.save('input_edge.png')
output_edge_img.save('output_edge.png')
# Calculate ESI (Edge Strength Improvement)
input_edge_mean = np.mean(input_edge)
output_edge_mean = np.mean(output_edge)
esi = output_edge_mean / (input_edge_mean + 1e-10) # Avoid division by zero
# —— Modified SSIM calculation section start ——
h, w = output_array.shape[:2]
min_side = min(h, w)
win = min(7, min_side)
if win % 2 == 0:
win -= 1
win = max(win, 3)
try:
ssim_value = ssim(
upsampled_array,
output_array,
data_range=255,
win_size=win,
channel_axis=-1
)
except ValueError:
ssim_value = ssim(
upsampled_array,
output_array,
data_range=255,
channel_axis=-1
)
# —— Modified SSIM calculation section end ——
# Determine task success
psnr_threshold = 18.0 # PSNR threshold
esi_threshold = 1.2 # ESI threshold (20% edge strength improvement)
ssim_threshold = 0.8 # SSIM threshold
success = psnr_value >= psnr_threshold and esi >= esi_threshold and ssim_value >= ssim_threshold
# Return results
return {
'PSNR': psnr_value,
'PSNR Threshold': psnr_threshold,
'ESI (Edge Strength Improvement)': esi,
'ESI Threshold': esi_threshold,
'SSIM': ssim_value,
'SSIM Threshold': ssim_threshold,
'Success': success
}
def validate_inputs(input_path, output_path):
"""
Validate input files exist, are non-empty, and have correct format.
Returns:
tuple: (bool, str) - (is valid, error message or empty string)
"""
try:
# Check file existence
if not os.path.exists(input_path):
return False, f"Input file {input_path} does not exist."
if not os.path.exists(output_path):
return False, f"Output file {output_path} does not exist."
# Check files are non-empty
if os.path.getsize(input_path) == 0:
return False, f"Input file {input_path} is empty."
if os.path.getsize(output_path) == 0:
return False, f"Output file {output_path} is empty."
# Check file format (try to open images)
try:
with Image.open(input_path) as img:
img.verify() # Verify image format
with Image.open(output_path) as img:
img.verify()
except Exception as e:
return False, f"Invalid image format: {str(e)}"
return True, ""
except Exception as e:
return False, f"Validation error: {str(e)}"
def save_result_to_jsonl(result_path, process, result, comments):
"""
Save results to JSONL file.
Args:
result_path (str): JSONL file path
process (bool/numpy.bool_): Whether input parameters are valid
result (bool/numpy.bool_): Whether evaluation succeeded
comments (str): Additional information
"""
time_point = datetime.now().strftime("%Y-%m-%dT%H:%M:%S")
record = {
"Process": bool(process), # Convert to Python bool
"Result": bool(result), # Convert to Python bool
"TimePoint": time_point,
"comments": comments
}
try:
with open(result_path, 'a', encoding='utf-8') as f:
json_line = json.dumps(record, ensure_ascii=False)
f.write(json_line + '\n')
except Exception as e:
print(f"Failed to save result to {result_path}: {str(e)}")
def main():
parser = argparse.ArgumentParser(description='Evaluate super-resolution quality without pretrained model.')
parser.add_argument('--groundtruth', type=str, required=True, help='Path to input low-resolution image')
parser.add_argument('--output', type=str, required=True, help='Path to output super-resolution image')
parser.add_argument('--result', type=str, help='Path to JSONL file to save results')
args = parser.parse_args()
# Validate input parameters
process, comments = validate_inputs(args.groundtruth, args.output)
# Initialize results
result_dict = {}
success = False
# Run evaluation if inputs are valid
if process:
try:
result_dict = evaluate_super_resolution(args.groundtruth, args.output)
success = result_dict.get('Success', False)
if 'Error' in result_dict:
comments = result_dict['Error']
success = False
else:
comments = (
f"PSNR: {result_dict['PSNR']:.3f} "
f"(Threshold: {result_dict['PSNR Threshold']}), "
f"ESI: {result_dict['ESI (Edge Strength Improvement)']:.3f} "
f"(Threshold: {result_dict['ESI Threshold']}), "
f"SSIM: {result_dict['SSIM']:.3f} "
f"(Threshold: {result_dict['SSIM Threshold']}), "
f"Success: {success}"
)
if not success:
comments += ". Possible issues: Low PSNR (poor pixel similarity), low ESI (insufficient edge enhancement), or low SSIM (structural distortion)."
except Exception as e:
process = False
success = False
comments = f"Evaluation failed: {str(e)}"
else:
success = False
# Print results
print('Evaluation Results:')
if process and 'Error' not in result_dict:
for key, value in result_dict.items():
if key != 'Error':
print(f'{key}: {value}')
else:
print(f'Error: {comments}')
# Save results to JSONL (if --result provided)
if args.result:
save_result_to_jsonl(args.result, process, success, comments)
if __name__ == '__main__':
main()