import argparse import json import os import re from datetime import datetime from ast import literal_eval import traceback def normalize_json_item(item): """ Normalize JSON objects to remove format differences """ if isinstance(item, str): # Try parsing string as dictionary try: item = json.loads(item) except: try: # Try parsing non-standard JSON with ast.literal_eval item = literal_eval(item) except: # Return original string if parsing fails return item # Ensure all keys are strings result = {} for k, v in item.items(): # Convert key to string and strip whitespace key = str(k).strip().lower() # Process value if isinstance(v, str): # Strip whitespace and lowercase string values (except for type field) if key == 'type': value = v.strip() # Preserve case for type field else: value = v.strip().lower() else: value = v result[key] = value return result def parse_gt_format(content): """ Special parser for gt.txt format Features multi-line dictionaries separated by commas """ items = [] # Replace all newlines to make content single line content = content.replace('\n', ' ') # Try parsing as list try: # If content is wrapped in brackets, remove them if content.strip().startswith('[') and content.strip().endswith(']'): content = content.strip()[1:-1] # Split multiple dictionaries (each starts with { and ends with }, or }) dict_pattern = r'\{[^{}]*\}' dict_matches = re.findall(dict_pattern, content) for dict_str in dict_matches: try: item = literal_eval(dict_str) items.append(normalize_json_item(item)) except Exception as e: print(f"Failed to parse dictionary: {dict_str[:50]}... Error: {e}") except Exception as e: print(f"Failed to parse gt format: {e}") print(f"Parsed {len(items)} items from gt format") return items def parse_json_line_format(content): """ Parse format with one JSON object per line """ items = [] lines = content.split('\n') for line in lines: line = line.strip() if not line: continue try: # Try parsing as JSON object item = json.loads(line) items.append(normalize_json_item(item)) except: try: # Try parsing non-standard JSON with ast.literal_eval item = literal_eval(line) items.append(normalize_json_item(item)) except Exception as e: print(f"Unable to parse line: {line[:50]}... Error: {e}") print(f"Parsed {len(items)} items from JSON line format") return items def load_json_items(file_path): """ Read file containing JSON objects, return normalized list Supports multiple formats: JSON per line, single JSON array, list of dicts, multi-line dict format """ print(f"Parsing file: {file_path}") items = [] try: with open(file_path, "r", encoding="utf-8") as f: content = f.read().strip() # Check if file is empty if not content: print("File is empty") return items # 1. First try gt.txt specific format if "{'c_header':" in content or '{"c_header":' in content or "'c_header':" in content: print("Detected gt.txt format, using specialized parser") items = parse_gt_format(content) if items: return items # 2. Try parsing as JSON array if content.startswith('[') and content.endswith(']'): try: array_items = json.loads(content) for item in array_items: items.append(normalize_json_item(item)) print(f"Parsed {len(items)} items from JSON array") return items except Exception as e: print(f"JSON array parsing failed: {e}") # Try Python list literal try: array_items = literal_eval(content) for item in array_items: items.append(normalize_json_item(item)) print(f"Parsed {len(items)} items from Python list") return items except Exception as e: print(f"Python list parsing failed: {e}") # 3. Try parsing JSON objects line by line items = parse_json_line_format(content) if items: return items # 4. Finally try extracting all possible dictionaries print("Attempting to extract all possible dictionaries...") dict_pattern = r'\{[^{}]*\}' dicts = re.findall(dict_pattern, content) for d in dicts: try: item = literal_eval(d) items.append(normalize_json_item(item)) except Exception as e: print(f"Dictionary extraction failed: {d[:30]}... Error: {e}") if items: print(f"Parsed {len(items)} items from dictionary extraction") return items except Exception as e: print(f"Error reading file: {e}") traceback.print_exc() return items def compare_items(pred_items, gt_items): """ Compare predicted items with ground truth items, calculate match rate for key fields """ if not pred_items or not gt_items: return 0, "No valid items to compare" print(f"Comparing {len(pred_items)} predicted items with {len(gt_items)} ground truth items") # List of key fields we consider more important key_fields = ['value', 'row', 'column', 'excel_rc', 'c_header', 'r_header', 'sheet', 'f_name'] total_matches = 0 total_fields = 0 missing_items = 0 # Number of items to match (based on smaller set) expected_matches = min(len(pred_items), len(gt_items)) # If predicted items are fewer than ground truth, record missing count if len(pred_items) < len(gt_items): missing_items = len(gt_items) - len(pred_items) # Print sample data for debugging print("Predicted items sample:") for i, item in enumerate(pred_items[:2]): print(f" Item {i}: {item}") print("Ground truth items sample:") for i, item in enumerate(gt_items[:2]): print(f" Item {i}: {item}") # Compare item by item for i in range(min(len(pred_items), len(gt_items))): pred_item = pred_items[i] gt_item = gt_items[i] item_matches = 0 item_fields = 0 # Compare key fields for field in key_fields: # For predicted item, try to match different case variations pred_fields = [f.lower() for f in pred_item.keys()] pred_field_key = None # Find matching field (case insensitive) if field in pred_item: pred_field_key = field else: for k in pred_item.keys(): if k.lower() == field.lower(): pred_field_key = k break # For ground truth item, also try to match different case variations gt_field_key = None if field in gt_item: gt_field_key = field else: for k in gt_item.keys(): if k.lower() == field.lower(): gt_field_key = k break # If both have the field, compare if pred_field_key is not None and gt_field_key is not None: item_fields += 1 pred_value = pred_item[pred_field_key] gt_value = gt_item[gt_field_key] # Case insensitive comparison for excel_rc field if field.lower() == 'excel_rc': if str(pred_value).upper() == str(gt_value).upper(): item_matches += 1 # Numeric comparison for numeric fields elif field.lower() in ['row', 'column'] and isinstance(pred_value, (int, float)) and isinstance( gt_value, (int, float)): if pred_value == gt_value: item_matches += 1 # Special handling for type field elif field.lower() == 'type': # Extract type name, ignoring quotes and class parts pred_type = re.sub(r"[<>'\"]|class\s+", "", str(pred_value)).strip() gt_type = re.sub(r"[<>'\"]|class\s+", "", str(gt_value)).strip() if pred_type == gt_type: item_matches += 1 # Standardized comparison for other fields elif str(pred_value).lower() == str(gt_value).lower(): item_matches += 1 # Add to total matches if item_fields > 0: total_matches += item_matches total_fields += item_fields # Calculate match rate if total_fields == 0: accuracy = 0 details = "No valid fields found for comparison" else: accuracy = total_matches / total_fields details = f"Matched fields: {total_matches}/{total_fields}" # Apply penalty if missing items if missing_items > 0: penalty = min(0.2, missing_items / len(gt_items) * 0.5) # Max 20% penalty accuracy = max(0, accuracy - penalty) details += f", Missing items: {missing_items}, applied {penalty:.2f} penalty" return accuracy, details def evaluate(pred_path, gt_path): """Evaluate based on parsed content""" threshold = 0.70 # Fixed threshold # Load and normalize data pred_items = load_json_items(pred_path) gt_items = load_json_items(gt_path) # Initialize result dictionary result = { "Process": True, "Result": False, "TimePoint": datetime.now().strftime("%Y-%m-%dT%H:%M:%S"), "comments": "" } # Check if input files are valid if not pred_items: result["Process"] = False result["comments"] = "Predicted file parsed as empty, cannot evaluate!" return result if not gt_items: result["Process"] = False result["comments"] = "❌ Ground truth parsed as empty!" result["Result"] = False return result # Compare items and calculate match rate accuracy, details = compare_items(pred_items, gt_items) # Determine result based on accuracy if accuracy >= threshold: result["Result"] = True result["comments"] = f"✅ Test passed! Content match rate={accuracy:.4f} ≥ {threshold}. {details}" else: result["Result"] = False result["comments"] = f"❌ Test failed. Content match rate={accuracy:.4f} < {threshold}. {details}" print(result["comments"]) return result def save_result(result, result_file): """Save results to jsonl file""" # Ensure directory exists os.makedirs(os.path.dirname(result_file) or '.', exist_ok=True) # Write in append mode, ensuring each record is on separate line with open(result_file, "a", encoding="utf-8") as f: f.write(json.dumps(result, ensure_ascii=False) + "\n") def main(): parser = argparse.ArgumentParser( description="Evaluate Excel cell parsing output by content similarity and save results") parser.add_argument("--output", required=True, help="Predicted output file path") parser.add_argument("--groundtruth", required=True, help="Ground truth file path") parser.add_argument("--result", required=True, help="Result output file path (JSONL format)") args = parser.parse_args() # Get evaluation result result = evaluate(args.output, args.groundtruth) # Save result to specified jsonl file save_result(result, args.result) print(f"Results saved to {args.result}") if __name__ == "__main__": main()