import argparse import cv2 import json import os from datetime import datetime from imwatermark import WatermarkDecoder from skimage.metrics import peak_signal_noise_ratio as compare_psnr def evaluate_watermark(original_path, watermark_text, watermarked_path): process_status = True final_result_status = False comments = [] # Timestamp time_point = datetime.now().isoformat() # Check input files if not os.path.exists(original_path) or os.path.getsize(original_path) == 0: comments.append(f"Error: Original image file '{original_path}' does not exist or is empty.") process_status = False if not os.path.exists(watermarked_path) or os.path.getsize(watermarked_path) == 0: comments.append(f"Error: Watermarked image file '{watermarked_path}' does not exist or is empty.") process_status = False if process_status: bgr_original = cv2.imread(original_path) bgr_encoded = cv2.imread(watermarked_path) if bgr_original is None or bgr_encoded is None: comments.append("Error: Failed to read images, please check if files are corrupted or in correct format.") process_status = False if process_status: try: # decoder = WatermarkDecoder('bytes', len(watermark_text)*8) # decoded_bytes = decoder.decode(bgr_encoded, 'dwtDct') # extracted_text= decoded_bytes.decode('utf-8', errors='ignore') # is_match = (extracted_text == watermark_text) max_bits = 256 decoder = WatermarkDecoder('bytes', max_bits) decoded_bytes = decoder.decode(bgr_encoded, 'dwtDct') extracted_text = decoded_bytes.decode('utf-8', errors='ignore') is_match = (watermark_text in extracted_text) comments.append(f"{'✅' if is_match else '❌'} Extraction result: '{extracted_text}' | GT: '{watermark_text}'") psnr_value = compare_psnr(bgr_original, bgr_encoded) comments.append(f"📐 PSNR: {psnr_value:.2f} dB") # Metrics match_rate = '100%' if is_match else '0%' psnr_satisfied = psnr_value >= 30.0 comments.append(f"🎯 Watermark detection_match: {match_rate}") comments.append(f"🎯 PSNR ≥ 30.0: {'✅ Satisfied' if psnr_satisfied else '❌ Not satisfied'}") final_result_status = is_match and psnr_satisfied comments.append(f"Final evaluation result: Watermark match={is_match}, PSNR satisfied={psnr_satisfied}") except Exception as e: comments.append(f"Exception occurred during watermark processing or evaluation: {e}") final_result_status = False output_data = { "Process": process_status, "Result": final_result_status, "TimePoint": time_point, "Comments": "\n".join(comments) } print(output_data["Comments"]) return output_data def write_to_jsonl(file_path, data): """ Append single result to JSONL file: Each run appends one JSON line. """ try: os.makedirs(os.path.dirname(file_path), exist_ok=True) with open(file_path, 'a', encoding='utf-8') as f: # Add default=str to handle non-serializable types with str() f.write(json.dumps(data, ensure_ascii=False, default=str) + '\n') print(f"✅ Result appended to JSONL file: {file_path}") except Exception as e: print(f"❌ Error occurred while writing to JSONL file: {e}") if __name__ == "__main__": parser = argparse.ArgumentParser( description="Extract and verify blind watermark, calculate image quality, and store results as JSONL") parser.add_argument("--groundtruth", required=True, help="Path to original image") parser.add_argument("--output", required=True, help="Path to watermarked image") parser.add_argument("--watermark", required=True, help="Expected watermark content to extract") parser.add_argument("--result", help="File path to store JSONL results") args = parser.parse_args() evaluation_result = evaluate_watermark( args.groundtruth, args.watermark, args.output) if args.result: write_to_jsonl(args.result, evaluation_result)