import pandas as pd import numpy as np import json import argparse import os from datetime import datetime import traceback from io import StringIO import sys def evaluate_rsp_metrics(output_csv, ground_truth_csv): log_output = StringIO() sys_stdout = sys.stdout sys.stdout = log_output # Capture print output result = { "Process": False, "Result": False, "TimePoint": datetime.now().isoformat(), "comments": "" } try: # Validate input files if not os.path.exists(output_csv): print(f"Error: Output CSV file '{output_csv}' does not exist") return result if not os.path.exists(ground_truth_csv): print(f"Error: Ground truth CSV file '{ground_truth_csv}' does not exist") return result if os.path.getsize(output_csv) == 0: print(f"Error: Output CSV file '{output_csv}' is empty") return result if os.path.getsize(ground_truth_csv) == 0: print(f"Error: Ground truth CSV file '{ground_truth_csv}' is empty") return result result["Process"] = True # Load CSV files output_df = pd.read_csv(output_csv) gt_df = pd.read_csv(ground_truth_csv) # Validate required columns required_columns = ["Mean_Respiratory_Rate_BPM", "Number_of_Peaks", "Peak_Times_Seconds"] for df, name in [(output_df, "Output"), (gt_df, "Ground Truth")]: missing_cols = [col for col in required_columns if col not in df.columns] if missing_cols: print(f"Error: {name} CSV missing columns: {missing_cols}") return result # Extract metrics pred_rate = output_df["Mean_Respiratory_Rate_BPM"].iloc[0] pred_peaks = json.loads(output_df["Peak_Times_Seconds"].iloc[0]) pred_count = output_df["Number_of_Peaks"].iloc[0] gt_rate = gt_df["Mean_Respiratory_Rate_BPM"].iloc[0] gt_peaks = json.loads(gt_df["Peak_Times_Seconds"].iloc[0]) gt_count = gt_df["Number_of_Peaks"].iloc[0] # Evaluate metrics rate_mae = abs(pred_rate - gt_rate) if not np.isnan(pred_rate) and not np.isnan(gt_rate) else np.nan rate_success = rate_mae <= 1.0 if not np.isnan(rate_mae) else False if pred_peaks and gt_peaks: peak_errors = [min(abs(p - gt) for gt in gt_peaks) for p in pred_peaks] peak_mptd = sum(peak_errors) / len(peak_errors) if peak_errors else np.nan peak_matching_count = sum(1 for err in peak_errors if err <= 0.1) peak_matching_rate = peak_matching_count / len(pred_peaks) if pred_peaks else 0.0 else: peak_mptd = np.nan peak_matching_rate = 0.0 peak_success = (peak_mptd <= 0.1 and peak_matching_rate >= 0.8) if not np.isnan(peak_mptd) else False peak_count_relative_error = ( abs(pred_count - gt_count) / gt_count if gt_count > 0 else np.nan ) count_success = peak_count_relative_error <= 0.1 if not np.isnan(peak_count_relative_error) else False success = rate_success and peak_success and count_success result["Result"] = success print("Evaluation Results:") print(f"Rate MAE: {rate_mae:.2f} BPM (Success: {rate_success})") print(f"Peak MPTD: {peak_mptd:.3f} seconds (Success: {peak_success})") print(f"Peak Matching Rate: {peak_matching_rate:.2f}") print(f"Peak Count Relative Error: {peak_count_relative_error:.2f} (Success: {count_success})") print(f"Overall Success: {success}") except Exception as e: traceback.print_exc(file=log_output) finally: sys.stdout = sys_stdout # Restore stdout result["comments"] = log_output.getvalue() return result def main(): parser = argparse.ArgumentParser(description="Evaluate RSP metrics against ground truth") parser.add_argument("--output", required=True, help="Path to output CSV file (rsp_metrics.csv)") parser.add_argument("--groundtruth", required=True, help="Path to ground truth CSV file") parser.add_argument("--result", default="results.jsonl", help="Path to JSONL result file") args = parser.parse_args() result_data = evaluate_rsp_metrics(args.output, args.groundtruth) # Write results to JSONL file try: with open(args.result, "a", encoding='utf-8') as f: f.write(json.dumps(result_data, ensure_ascii=False, default=str) + "\n") except Exception as e: print(f"Failed to write result to {args.result}: {e}") if __name__ == "__main__": main()