import argparse import json import os from datetime import datetime from difflib import SequenceMatcher def check_file_valid(file_path: str) -> bool: if not os.path.isfile(file_path): print(f"❌ File does not exist: {file_path}") return False if os.path.getsize(file_path) == 0: print(f"❌ File is empty: {file_path}") return False return True def load_json_or_jsonl(file_path: str): with open(file_path, "r", encoding="utf-8") as f: content = f.read().strip() if not content: return [] # Try to parse as JSON array try: data = json.loads(content) if isinstance(data, list): return data except json.JSONDecodeError: pass # Otherwise process as JSONL lines = [] with open(file_path, "r", encoding="utf-8") as f: for i, line in enumerate(f, 1): line = line.strip() if not line: continue try: item = json.loads(line) if isinstance(item, list): lines.extend(item) else: lines.append(item) except Exception as e: print(f"❌ Line {i} JSON parse failed: {line}") raise e return lines def normalized_similarity(a: str, b: str) -> float: return SequenceMatcher(None, a.strip(), b.strip()).ratio() def evaluate_scrapy_output(pred_path: str, truth_path: str, result_path: str = None) -> bool: threshold = 0.95 process_success = check_file_valid(pred_path) and check_file_valid(truth_path) if not process_success: result = { "Process": False, "Result": False, "TimePoint": datetime.now().isoformat(), "comments": f"❌ File does not exist or is empty: pred={pred_path}, truth={truth_path}" } if result_path: with open(result_path, "a", encoding="utf-8") as f: f.write(json.dumps(result, ensure_ascii=False) + "\n") return False try: pred_lines = load_json_or_jsonl(pred_path) true_lines = load_json_or_jsonl(truth_path) if len(pred_lines) != len(true_lines): print(f"⚠️ Crawl results count mismatch (predicted {len(pred_lines)}, truth {len(true_lines)})") total_fields = 0 total_similarity = 0 for pred, true in zip(pred_lines, true_lines): for field in ["author", "text"]: pred_val = str(pred.get(field, "")) true_val = str(true.get(field, "")) sim = normalized_similarity(pred_val, true_val) total_similarity += sim total_fields += 1 avg_similarity = total_similarity / total_fields if total_fields else 0 result_passed = avg_similarity >= threshold print(f"📊 Average field similarity (edit distance): {avg_similarity:.2%}") print("✅ Extraction valid, similarity >= 95%" if result_passed else "❌ Extraction failed") if result_path: result = { "Process": True, "Result": result_passed, "TimePoint": datetime.now().isoformat(), "comments": f"Average field similarity: {avg_similarity:.4f}, {'meets' if result_passed else 'does not meet'} 95% threshold" } with open(result_path, "a", encoding="utf-8") as f: f.write(json.dumps(result, ensure_ascii=False) + "\n") return result_passed except Exception as e: print(f"❌ Runtime error: {e}") if result_path: result = { "Process": True, "Result": False, "TimePoint": datetime.now().isoformat(), "comments": f"Runtime error: {str(e)}" } with open(result_path, "a", encoding="utf-8") as f: f.write(json.dumps(result, ensure_ascii=False) + "\n") return False if __name__ == "__main__": parser = argparse.ArgumentParser(description="Evaluate field-level similarity of Scrapy crawl results") parser.add_argument("--output", type=str, required=True, help="Prediction results (JSON/JSONL) path") parser.add_argument("--groundtruth", type=str, required=True, help="Ground truth (JSON/JSONL) path") parser.add_argument("--result", type=str, required=False, help="Output JSONL file path for results") args = parser.parse_args() success = evaluate_scrapy_output(args.output, args.groundtruth, args.result)