import argparse import csv import os import json from datetime import datetime def check_file_valid(file_path: str) -> bool: if not os.path.isfile(file_path): print(f"❌ File does not exist: {file_path}") return False if os.path.getsize(file_path) == 0: print(f"❌ File is empty: {file_path}") return False return True def evaluate_scraping(pred_file: str, gt_file: str, threshold: float = 0.95, result_file: str = None): process_success = check_file_valid(pred_file) and check_file_valid(gt_file) if not process_success: result = { "Process": False, "Result": False, "TimePoint": datetime.now().isoformat(), "comments": f"❌ File does not exist or is empty: pred={pred_file}, gt={gt_file}" } if result_file: with open(result_file, "a", encoding="utf-8") as f: f.write(json.dumps(result, ensure_ascii=False, default=str) + "\n") return False # Read prediction file preds = [] with open(pred_file, 'r', encoding='utf-8') as f: reader = csv.DictReader(f) for row in reader: preds.append(row) # Read ground truth gts = [] with open(gt_file, 'r', encoding='utf-8') as f: reader = csv.DictReader(f) for row in reader: gts.append(row) if len(preds) != len(gts): print( f"⚠️ Prediction and ground truth counts mismatch (predicted {len(preds)}, truth {len(gts)}), comparing minimum count.") num_samples = min(len(preds), len(gts)) fields = preds[0].keys() # Assume column names match correct_counts = {field: 0 for field in fields} # Calculate accuracy per column for i in range(num_samples): for field in fields: if preds[i][field] == gts[i][field]: correct_counts[field] += 1 accuracies = {field: correct_counts[field] / num_samples for field in fields} # Print accuracy per column for field, acc in accuracies.items(): print(f"Field '{field}' accuracy: {acc:.4f}") # Check if all fields meet threshold success = all(acc >= threshold for acc in accuracies.values()) if success: print("✅ Validation passed: All columns accuracy >95%") else: print("❌ Validation failed: Some columns accuracy <95%") # Save results if result_file: result = { "Process": True, "Result": success, "TimePoint": datetime.now().isoformat(), "comments": f"Field-level accuracy: {accuracies}, {'meets' if success else 'does not meet'} 95% threshold" } with open(result_file, "a", encoding="utf-8") as f: f.write(json.dumps(result, ensure_ascii=False, default=str) + "\n") return accuracies, success def main(): parser = argparse.ArgumentParser(description="Evaluate field-level accuracy of Scrapy crawl results") parser.add_argument('--output', type=str, required=True, help="Prediction results (CSV) path") parser.add_argument('--groundtruth', type=str, required=True, help="Ground truth data (CSV) path") parser.add_argument('--threshold', type=float, default=0.95, help="Field accuracy threshold") parser.add_argument('--result', type=str, required=False, help="Output JSONL file path for results") args = parser.parse_args() evaluate_scraping(args.output, args.groundtruth, args.threshold, args.result) if __name__ == "__main__": main()