import argparse import os import xml.etree.ElementTree as ET import json import re from datetime import datetime def check_file_valid(file_path: str) -> bool: if not os.path.isfile(file_path): print(f"❌ File does not exist: {file_path}") return False if os.path.getsize(file_path) == 0: print(f"❌ File is empty: {file_path}") return False return True def clean_text(text): """Clean and normalize text for comparison""" if text is None: return "" # Remove quotes at beginning and end (different agents might handle quotes differently) text = text.strip() text = re.sub(r'^[""]|[""]$', '', text) # Normalize whitespace text = re.sub(r'\s+', ' ', text) return text.strip() def extract_xml_content(file_path): """Extract content from XML file, filtering out possible comments and non-XML content""" try: with open(file_path, 'r', encoding='utf-8') as f: content = f.read() # Keep XML declaration if found, otherwise add one xml_decl_match = re.search(r'<\?xml[^>]+\?>', content) if xml_decl_match: xml_decl = xml_decl_match.group(0) content = content[xml_decl_match.end():] else: xml_decl = '' # Remove XML comments content = re.sub(r'', '', content, flags=re.DOTALL) # Remove illegal XML characters content = re.sub(r'[\x00-\x08\x0B\x0C\x0E-\x1F\x7F]', '', content) # Find content between first < and last > (remove possible non-XML prefixes/suffixes) start_idx = content.find('<') end_idx = content.rfind('>') if start_idx >= 0 and end_idx > start_idx: content = content[start_idx:end_idx + 1] # Ensure there's a root element if not re.search(r'<\w+[^>]*>.*', content, re.DOTALL): content = f"{content}" return xml_decl + content except Exception as e: print(f"❌ Failed to read XML file: {e}") return None def parse_xml(file_path): """Generic XML parser that identifies various possible structures""" try: xml_content = extract_xml_content(file_path) if not xml_content: return [] # Try to parse XML root = ET.fromstring(xml_content) except ET.ParseError as e: print(f"❌ XML parse error, attempting repair: {e}") try: # Try to handle incomplete XML xml_content = re.sub(r'<\?xml[^>]+\?>', '', xml_content) xml_content = f"{xml_content}" root = ET.fromstring(xml_content) except ET.ParseError as e2: print(f"❌ XML repair failed: {e2}") # Final attempt with more aggressive repair try: pattern = r'<(.*?)>(.*?)' matches = re.findall(pattern, xml_content, re.DOTALL) items_xml = ''.join([f'{m[1]}' for m in matches if len(m) >= 2]) root = ET.fromstring(f"{items_xml}") except: print("❌ All XML repair attempts failed") return [] records = [] # Get all possible item elements # Common tag patterns: quote, item, entry, record, etc. item_tags = ['quote', 'item', 'entry', 'record', 'row', 'data'] # Try to find direct children of root element direct_children = list(root) # If there are multiple direct children with similar structure, they might be our items candidates = [] if len(direct_children) > 1: # Check if these elements have similar structure first_child_tags = set([child.tag for child in direct_children[0]] if len(direct_children) > 0 else []) if all(set([child.tag for child in elem]) == first_child_tags for elem in direct_children[1:]): candidates.extend(direct_children) # If no suitable direct children found, try predefined item tags if not candidates: for tag in item_tags: items = root.findall(f".//{tag}") if items: candidates.extend(items) break # If still not found, try to find any element containing author and text sub-elements if not candidates: for elem in root.findall(".//*"): has_author = any(child.tag == 'author' or 'author' in child.tag.lower() for child in elem) has_text = any(child.tag == 'text' or 'text' in child.tag.lower() for child in elem) if has_author and has_text: candidates.append(elem) # Extract author and text information from candidate items for item in candidates: author_content = "" text_content = "" # Method 1: Directly look for specific tags for child in item: if child.tag.lower() == 'author' or 'author' in child.tag.lower(): author_content = clean_text(child.text) elif child.tag.lower() == 'text' or 'text' in child.tag.lower() or child.tag.lower() == 'quote': text_content = clean_text(child.text) # Method 2: Look for elements containing specific keywords if not author_content or not text_content: for elem in item.findall(".//*"): if (elem.tag.lower() == 'author' or 'author' in elem.tag.lower()) and not author_content: author_content = clean_text(elem.text) elif ( elem.tag.lower() == 'text' or 'text' in elem.tag.lower() or 'quote' in elem.tag.lower() or 'content' in elem.tag.lower()) and not text_content: text_content = clean_text(elem.text) # Method 3: Look in attributes for attr_name, attr_value in item.attrib.items(): if ('author' in attr_name.lower()) and not author_content: author_content = clean_text(attr_value) elif ( 'text' in attr_name.lower() or 'quote' in attr_name.lower() or 'content' in attr_name.lower()) and not text_content: text_content = clean_text(attr_value) # Method 4: If item only has plain text with specific pattern, try to extract if (not author_content or not text_content) and item.text and item.text.strip(): # Try to match author-quote pattern like "Author Name: 'Quote text'" author_quote_match = re.search(r'([^:]+):\s*[\'"](.+?)[\'"]', item.text.strip()) if author_quote_match: if not author_content: author_content = clean_text(author_quote_match.group(1)) if not text_content: text_content = clean_text(author_quote_match.group(2)) # Only include records with content if author_content and text_content: records.append({ "author": author_content, "text": text_content }) # If no records found with above methods, try direct text extraction if not records: print("⚠️ No records found with standard parsing methods, attempting direct text extraction...") try: with open(file_path, 'r', encoding='utf-8') as f: content = f.read() # Try to match author and quote patterns pattern = r'<(author|text)>(.*?)' matches = re.findall(pattern, content, re.IGNORECASE | re.DOTALL) authors = [clean_text(m[1]) for m in matches if m[0].lower() == 'author' and m[2].lower() == 'author'] texts = [clean_text(m[1]) for m in matches if m[0].lower() == 'text' and m[2].lower() == 'text'] # If equal number of authors and texts found, assume they are pairs if len(authors) == len(texts) and len(authors) > 0: records = [{"author": a, "text": t} for a, t in zip(authors, texts)] except Exception as e: print(f"❌ Text extraction failed: {e}") return records def find_best_matches(preds, gts): """Find best matches between predictions and ground truth""" matched_pairs = [] remaining_preds = list(range(len(preds))) for i, gt_item in enumerate(gts): best_score = -1 best_idx = -1 for j in remaining_preds: pred_item = preds[j] score = 0 # Score based on text similarity for field in ["author", "text"]: gt_val = gt_item.get(field, "").lower() pred_val = pred_item.get(field, "").lower() # Exact match if gt_val == pred_val: score += 2 # Partial match (one contains the other) elif gt_val in pred_val or pred_val in gt_val: score += 1 if score > best_score: best_score = score best_idx = j if best_idx >= 0: matched_pairs.append((i, best_idx)) remaining_preds.remove(best_idx) else: # If no match found, use default index matching default_idx = i if i < len(preds) else 0 matched_pairs.append((i, default_idx)) return matched_pairs def evaluate_scraping_xml(pred_file, gt_file, threshold=0.95, result_file=None): if not check_file_valid(pred_file) or not check_file_valid(gt_file): return {}, False preds = parse_xml(pred_file) gts = parse_xml(gt_file) # Changed from parse_csv to parse_xml if not preds: print("❌ Could not extract valid records from prediction XML") if result_file: result = { "Process": True, "Result": False, "TimePoint": datetime.now().isoformat(), "comments": "Prediction XML parsing failed, could not extract valid records" } with open(result_file, "a", encoding="utf-8") as f: f.write(json.dumps(result, ensure_ascii=False, default=str) + "\n") return {}, False if not gts: print("❌ Could not extract valid records from ground truth XML") if result_file: result = { "Process": True, "Result": False, "TimePoint": datetime.now().isoformat(), "comments": "Ground truth XML parsing failed, could not extract valid records" } with open(result_file, "a", encoding="utf-8") as f: f.write(json.dumps(result, ensure_ascii=False, default=str) + "\n") return {}, False print(f"✓ Extracted {len(preds)} records from prediction XML") print(f"✓ Extracted {len(gts)} records from ground truth XML") for i, record in enumerate(preds[:3]): # Only show first 3 as examples print(f" Prediction Record {i + 1}: Author='{record['author']}', Text='{record['text'][:30]}...'") if len(preds) > 3: print(f" ... plus {len(preds) - 3} more prediction records") if len(preds) != len(gts): print( f"⚠️ Prediction and ground truth lengths differ (predicted {len(preds)}, truth {len(gts)}), finding best matches.") num_samples = min(len(preds), len(gts)) if num_samples == 0: print("❌ Error: No data to compare.") return {}, False fields = ["author", "text"] correct_counts = {field: 0 for field in fields} # Find best matches between predictions and ground truth matched_pairs = find_best_matches(preds, gts[:num_samples]) for gt_idx, pred_idx in matched_pairs: for field in fields: gt_val = clean_text(gts[gt_idx].get(field, "")).lower() pred_val = clean_text(preds[pred_idx].get(field, "")).lower() # Exact match or near-exact match (allowing minor differences) if gt_val == pred_val: correct_counts[field] += 1 # If ground truth is fully contained in prediction, also count as correct elif gt_val and gt_val in pred_val: correct_counts[field] += 1 print(f"⚠️ Field '{field}' partial match: GT='{gt_val}', Pred='{pred_val}'") accuracies = {field: correct_counts[field] / num_samples for field in fields} for field, acc in accuracies.items(): print(f"Field '{field}' accuracy: {acc:.4f}") success = all(acc >= threshold for acc in accuracies.values()) print( f"✅ Validation passed: All fields accuracy >= {threshold * 100}%" if success else f"❌ Validation failed: Some fields accuracy < {threshold * 100}%") if result_file: # Ensure directory exists os.makedirs(os.path.dirname(result_file), exist_ok=True) result = { "Process": True, "Results": success, "TimePoint": datetime.now().isoformat(), "comments": f"Field-level accuracy: {accuracies}, {'meets' if success else 'does not meet'} {threshold * 100}% threshold" } with open(result_file, "a", encoding="utf-8") as f: f.write(json.dumps(result, ensure_ascii=False, default=str) + "\n") return accuracies, success def main(): parser = argparse.ArgumentParser( description="Evaluate accuracy of XML extraction results against Ground Truth XML.") parser.add_argument('--output', type=str, required=True, help="Prediction XML file path") parser.add_argument('--groundtruth', type=str, required=True, help="Ground truth XML file path") parser.add_argument('--threshold', type=float, default=0.95, help="Field accuracy threshold") parser.add_argument('--result', type=str, required=False, help="Output JSONL file path for results") args = parser.parse_args() evaluate_scraping_xml(args.output, args.groundtruth, args.threshold, args.result) if __name__ == "__main__": main()