#!/usr/bin/env python3 import os import sys import argparse import json import datetime import cv2 import numpy as np import torch import lpips from torchvision import transforms import torch.nn.functional as F from PIL import Image, UnidentifiedImageError def verify_image(path, exts=('.png', '.jpg', '.jpeg', '.webp')): """Verify file exists, is non-empty, has valid extension, and can be opened by PIL.""" if not os.path.isfile(path): return False, f'File not found: {path}' if os.path.getsize(path) == 0: return False, f'File is empty: {path}' if not path.lower().endswith(exts): return False, f'Unsupported format: {path}' try: img = Image.open(path) img.verify() except (UnidentifiedImageError, Exception) as e: return False, f'Cannot read image: {path} ({e})' return True, '' def load_tensor(path): """Load and normalize image to [-1,1] range Tensor""" img = cv2.imread(path, cv2.IMREAD_COLOR) if img is None: raise RuntimeError(f'cv2 read failed: {path}') img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) t = transforms.ToTensor()(img) * 2 - 1 return t.unsqueeze(0) def histogram_intersection(a, b, bins=256): """Calculate average intersection ratio of RGB channel histograms between two images""" inters = [] for ch in range(3): h1 = cv2.calcHist([a], [ch], None, [bins], [0,256]).ravel() h2 = cv2.calcHist([b], [ch], None, [bins], [0,256]).ravel() if h1.sum() > 0: h1 = h1 / h1.sum() if h2.sum() > 0: h2 = h2 / h2.sum() inters.append(np.minimum(h1, h2).sum()) return float(np.mean(inters)) if __name__ == "__main__": p = argparse.ArgumentParser(description='Automated style transfer evaluation script') p.add_argument('--groundtruth', required=True, help='Ground truth directory path') p.add_argument('--output', required=True, help='Path to stylized output image') p.add_argument('--lpips-thresh', type=float, default=0.5, help='LPIPS threshold (>= passes)') p.add_argument('--hi-thresh', type=float, default=0.7, help='HI (Histogram Intersection) threshold (>= passes)') p.add_argument('--result', required=True, help='Result JSONL file path (append mode)') args = p.parse_args() # Build content and style paths content_path = os.path.join(args.groundtruth, 'gt_01.jpg') style_path = os.path.join(args.groundtruth, 'gt_02.jpg') process = True comments = [] # ——— 1. Validate all files ——— for tag, path in [('content', content_path), ('style', style_path), ('output', args.output)]: ok, msg = verify_image(path) if not ok: process = False comments.append(f'[{tag}] {msg}') # ——— 2. Calculate metrics (only if process==True) ——— lpips_pass = hi_pass = False lpips_val = hi_val = None if process: try: # LPIPS between content and output img_c = load_tensor(content_path) img_o = load_tensor(args.output) # Align dimensions _, _, h0, w0 = img_c.shape _, _, h1, w1 = img_o.shape nh, nw = min(h0,h1), min(w0,w1) if (h0,w0)!=(nh,nw): img_c = F.interpolate(img_c, size=(nh,nw), mode='bilinear', align_corners=False) if (h1,w1)!=(nh,nw): img_o = F.interpolate(img_o, size=(nh,nw), mode='bilinear', align_corners=False) loss_fn = lpips.LPIPS(net='vgg').to(torch.device('cpu')) with torch.no_grad(): lpips_val = float(loss_fn(img_c, img_o).item()) lpips_pass = lpips_val >= args.lpips_thresh # HI between style and output img_s = cv2.imread(style_path, cv2.IMREAD_COLOR) img_o_cv = cv2.imread(args.output, cv2.IMREAD_COLOR) hi_val = histogram_intersection(img_s, img_o_cv) hi_pass = hi_val >= args.hi_thresh comments.append(f'LPIPS={lpips_val:.4f} (>= {args.lpips_thresh} → {"OK" if lpips_pass else "FAIL"})') comments.append(f'HI={hi_val:.4f} (>= {args.hi_thresh} → {"OK" if hi_pass else "FAIL"})') except Exception as e: process = False comments.append(f'Metric calculation error: {e}') # ——— 3. Write to JSONL ——— result_flag = (process and lpips_pass and hi_pass) entry = { "Process": process, "Result": result_flag, "TimePoint": datetime.datetime.now().isoformat(sep='T', timespec='seconds'), "comments": "; ".join(comments) } print(entry["comments"]) os.makedirs(os.path.dirname(args.result) or '.', exist_ok=True) with open(args.result, 'a', encoding='utf-8') as f: f.write(json.dumps(entry, ensure_ascii=False, default=str) + "\n") # ——— 4. Output final status ——— print("\nEvaluation complete - Final status: " + ("PASSED" if result_flag else "FAILED"))