#!/usr/bin/env python3 import os import sys import argparse import json import datetime import cv2 import numpy as np import torch import lpips from torchvision import transforms from PIL import Image, UnidentifiedImageError def verify_image(path, exts=('.png', '.jpg', '.jpeg', '.webp')): """Check if file exists, is not empty, has valid extension, and can be opened by PIL.""" if not os.path.isfile(path): return False, f'File does not exist: {path}' if os.path.getsize(path) == 0: return False, f'File is empty: {path}' if not path.lower().endswith(exts): return False, f'Unsupported format: {path}' try: img = Image.open(path) img.verify() except (UnidentifiedImageError, Exception) as e: return False, f'Cannot read image: {path} ({e})' return True, '' def load_tensor(path): """Load and normalize to [-1,1] Tensor as in original script""" img = cv2.imread(path, cv2.IMREAD_COLOR) if img is None: raise RuntimeError(f'cv2 read failed: {path}') img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) t = transforms.ToTensor()(img) * 2 - 1 return t.unsqueeze(0) if __name__ == "__main__": p = argparse.ArgumentParser(description='Automated image quality evaluation script') p.add_argument('--groundtruth', required=True, help='Path to original content image') p.add_argument('--output', required=True, help='Path to stylized output image') p.add_argument('--lpips-thresh', type=float, default=0.5, help='LPIPS threshold (>= passes)') p.add_argument('--result', required=True, help='Result JSONL file path, append mode') args = p.parse_args() process = True comments = [] # ——— 1. Validate all files ——— for tag, path in [('groundtruth', args.groundtruth), ('output', args.output)]: ok, msg = verify_image(path) if not ok: process = False comments.append(f'[{tag}] {msg}') # ——— 2. Calculate metrics (only if process==True) ——— lpips_pass = False lpips_val = None if process: try: # LPIPS between content and output img_c = load_tensor(args.groundtruth) img_o = load_tensor(args.output) # Align dimensions _, _, h0, w0 = img_c.shape _, _, h1, w1 = img_o.shape nh, nw = min(h0,h1), min(w0,w1) if (h0,w0)!=(nh,nw): img_c = torch.nn.functional.interpolate(img_c, size=(nh,nw), mode='bilinear', align_corners=False) if (h1,w1)!=(nh,nw): img_o = torch.nn.functional.interpolate(img_o, size=(nh,nw), mode='bilinear', align_corners=False) loss_fn = lpips.LPIPS(net='vgg').to(torch.device('cpu')) with torch.no_grad(): lpips_val = float(loss_fn(img_c, img_o).item()) lpips_pass = lpips_val >= args.lpips_thresh comments.append(f'LPIPS={lpips_val:.4f} (>= {args.lpips_thresh} → {"OK" if lpips_pass else "FAIL"})') except Exception as e: process = False comments.append(f'Metric calculation error: {e}') # ——— 3. Write to JSONL ——— result_flag = (process and lpips_pass) entry = { "Process": process, "Result": result_flag, "TimePoint": datetime.datetime.now().isoformat(sep='T', timespec='seconds'), "comments": "; ".join(comments) } os.makedirs(os.path.dirname(args.result) or '.', exist_ok=True) with open(args.result, 'a', encoding='utf-8') as f: f.write(json.dumps(entry, ensure_ascii=False, default=str) + "\n") # ——— 4. Output final status ——— print("\nTest complete - Final status: " + ("PASS" if result_flag else "FAIL"))