import os import argparse import numpy as np import json import datetime # Import Levenshtein distance calculation function from Levenshtein import distance as levenshtein_distance def evaluate_extraction(pred_path, gt_path): # Fixed threshold threshold = 0.5 # Prediction is considered successful if edit distance is below this threshold # Check if file exists def check_file_exists(file_path): if not os.path.isfile(file_path): print(f"❌ Error: File does not exist: {file_path}") return False if os.path.getsize(file_path) == 0: print(f"❌ Error: File is empty: {file_path}") return False return True # Check files file_check = check_file_exists(pred_path) and check_file_exists(gt_path) if not file_check: return None, False # Read prediction result with open(pred_path, 'r', encoding='utf-8') as f: pred_text = f.read() # Read ground truth with open(gt_path, 'r', encoding='utf-8') as f: gt_text = f.read() # Calculate edit distance edit_distance = levenshtein_distance(pred_text, gt_text) max_len = max(len(pred_text), len(gt_text)) # Calculate edit distance ratio edit_distance_ratio = edit_distance / max_len if max_len > 0 else 0 # Output edit distance ratio print(f"Edit Distance Ratio: {edit_distance_ratio:.4f}") # Check if threshold is met if edit_distance_ratio <= threshold: print("✅ Correctly completed") else: print("❌ Extraction error") return edit_distance_ratio, True def main(): parser = argparse.ArgumentParser( description="Evaluate the edit distance between extracted and ground truth markdown content.") parser.add_argument('--output', type=str, required=True, help='Path to the extracted prediction markdown file') parser.add_argument('--groundtruth', type=str, required=True, help='Path to the ground truth markdown file') parser.add_argument('--result', type=str, required=True, help='Path to save the result in jsonl format') args = parser.parse_args() # Calculate extraction accuracy (edit distance ratio) edit_distance_ratio, process_status = evaluate_extraction(pred_path=args.output, gt_path=args.groundtruth) # Save results result = { "Process": process_status, "Result": edit_distance_ratio <= 0.5 if process_status else False, # Check if edit distance ratio is below threshold "TimePoint": datetime.datetime.now().strftime("%Y-%m-%dT%H:%M:%S"), "comments": f"Edit Distance Ratio: {edit_distance_ratio:.4f} {'meets' if edit_distance_ratio <= 0.5 else 'does not meet'} 50% accuracy requirement" if process_status else "File check failed" } # Ensure directory exists os.makedirs(os.path.dirname(args.result) or '.', exist_ok=True) # Write results with open(args.result, 'a', encoding='utf-8') as f: f.write(json.dumps(result, ensure_ascii=False) + '\n') if __name__ == "__main__": main()