Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
hate-speech-detection
Languages:
English
Size:
100K - 1M
License:
Louis Thomson
commited on
Commit
·
12f7f0d
1
Parent(s):
29dc9e8
Delete clean.py
Browse filesTesting to see if deleting clean.py will make load_dataset immediately able to parse the files.
clean.py
DELETED
@@ -1,153 +0,0 @@
|
|
1 |
-
import re
|
2 |
-
import math
|
3 |
-
|
4 |
-
import pandas as pd
|
5 |
-
|
6 |
-
from tqdm import tqdm
|
7 |
-
|
8 |
-
seed = 7497
|
9 |
-
|
10 |
-
TOXIC_COLUMNS = [
|
11 |
-
"toxic",
|
12 |
-
"severe_toxic",
|
13 |
-
"obscene",
|
14 |
-
"threat",
|
15 |
-
"insult",
|
16 |
-
"identity_hate",
|
17 |
-
]
|
18 |
-
|
19 |
-
# Time and date regexes
|
20 |
-
TIME = r"([0-9]{1,2}:[0-9]{2}( (am|AM|pm|PM))?)"
|
21 |
-
DAY = r"([23]?(1(st)?|2(nd)?|3(rd)?|[4-9](th)?)|1[0-9](th)?)"
|
22 |
-
MONTH = r"(January|February|March|April|May|June|July|August|September|October|November|December|Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Nov|Dec)"
|
23 |
-
YEAR = r"('?[0-9]{2}|[0-9]{4})"
|
24 |
-
DATE = rf"(({DAY} {MONTH}|{MONTH} {DAY})(,? {YEAR})?)"
|
25 |
-
TIMESTAMP = rf"((({TIME},? (\(UTC\) )?)?{DATE}|({DATE},? )?{TIME})(\s+\(UTC\))?)"
|
26 |
-
|
27 |
-
# The 'talk' part at the end of a signature
|
28 |
-
TALK = r"((\|\s*|\(\s*)?[tT]alk((\s*[-|•, ]\s*|\s+)[cC]ontribs)?(\s*[-|)])?)"
|
29 |
-
|
30 |
-
# IP addresses
|
31 |
-
IP = r"([0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3})"
|
32 |
-
|
33 |
-
# Username and the username part of a the signature
|
34 |
-
USERNAME = r"([^#<>[\]|{}/@\s]+)"
|
35 |
-
USER_SIG = rf"((((?:\s)[-–—]\s*)?(\((User:)?{USERNAME}\)|User:{USERNAME})|(?:\s)[-–—]\s*{USERNAME})(\s+{TALK})?)"
|
36 |
-
|
37 |
-
# A full signature
|
38 |
-
SIGNATURE = rf"(((([-–—]\s*)?{IP}(\s+{USER_SIG})?|(?:\s)[-–—]\s*[uU]nsigned|{TALK}|{USER_SIG})(\s+{TIMESTAMP})?)|{TIMESTAMP}(\s+{TALK})?)"
|
39 |
-
|
40 |
-
# List of the patterns to remove
|
41 |
-
REGEX_REMOVE = [
|
42 |
-
r"^(\"+|'+)", # Initial quotation marks
|
43 |
-
r"(\"+|'+)$", # Final quotation marks
|
44 |
-
r"^REDIRECT.*$", # The whole comment is a redirect
|
45 |
-
rf"^\s*{SIGNATURE}", # Initial signature
|
46 |
-
rf"{SIGNATURE}\s*$", # Final signature
|
47 |
-
r" \[[0-9]+\]|\[[0-9]+\] ", # Citations
|
48 |
-
r"‖\s+[tT]alk - [-a-zA-Z0-9._()\s]+‖",
|
49 |
-
r"==[^=]+==",
|
50 |
-
r"^::+",
|
51 |
-
r"^\s*\(UTC\)",
|
52 |
-
rf"Unblock {IP}",
|
53 |
-
r"2nd Unblock Request",
|
54 |
-
r":Category:",
|
55 |
-
r"File:[^\s]+",
|
56 |
-
r"\{\|.+\|\}", # Embedded code
|
57 |
-
# r"\{\{.+\s.+\}\}", # Embedded code
|
58 |
-
r"^\s+", # Initial whitespace
|
59 |
-
r"\s+$", # Trailing whitespace
|
60 |
-
]
|
61 |
-
|
62 |
-
# List of patterns to replaces
|
63 |
-
REGEX_REPLACE = {
|
64 |
-
"\n+": "\n",
|
65 |
-
"\\'": "'",
|
66 |
-
'""+': '"',
|
67 |
-
"''+": "'",
|
68 |
-
# r"(WP|Wikipedia):[^\s]+": "URL", # Wikipedia internal links
|
69 |
-
r"[^\s]+#[^\s]+": "URL", # Wikipedia internal links
|
70 |
-
r"https?:\/\/(www\.)?[-a-zA-Z0-9@:%._\+~#=]{2,256}\.[a-z]{2,4}\b([-a-zA-Z0-9@:%_\+.~#?&//=]*)": "URL", # ULRs
|
71 |
-
r"([uU]ser_[tT]alk|[tT]alk):[^\s]+": "URL", # Talk links
|
72 |
-
}
|
73 |
-
|
74 |
-
|
75 |
-
def clean_sentence(sentence):
|
76 |
-
"""Preprocess a sentence using the regex rules"""
|
77 |
-
for pattern in REGEX_REMOVE:
|
78 |
-
sentence = re.sub(pattern, "", sentence)
|
79 |
-
for pattern, repl in REGEX_REPLACE.items():
|
80 |
-
sentence = re.sub(pattern, repl, sentence)
|
81 |
-
return sentence
|
82 |
-
|
83 |
-
|
84 |
-
def make_binary_label(row):
|
85 |
-
"""Make a row label binary by combining all toxicity types"""
|
86 |
-
for column in TOXIC_COLUMNS:
|
87 |
-
if row[column] == 1:
|
88 |
-
return 1
|
89 |
-
return 0
|
90 |
-
|
91 |
-
|
92 |
-
print("Loading original data...")
|
93 |
-
|
94 |
-
# Load up the original data
|
95 |
-
train_df = pd.read_csv("orig_train.csv").set_index("id")
|
96 |
-
test_text_df = pd.read_csv("orig_test.csv").set_index("id")
|
97 |
-
test_labels_df = pd.read_csv("orig_test_labels.csv").set_index("id")
|
98 |
-
|
99 |
-
# Remove the datapoints which have no label
|
100 |
-
test_text_df = test_text_df.loc[test_labels_df["toxic"] != -1]
|
101 |
-
test_labels_df = test_labels_df.loc[test_labels_df["toxic"] != -1]
|
102 |
-
|
103 |
-
# Join the test text and labels to make a complete dataset
|
104 |
-
test_df = test_text_df.join(test_labels_df)
|
105 |
-
|
106 |
-
print("Cleaning train split...")
|
107 |
-
for index, row in tqdm(train_df.iterrows(), total=len(train_df)):
|
108 |
-
row["comment_text"] = clean_sentence(row["comment_text"])
|
109 |
-
|
110 |
-
print("Cleaning test split...")
|
111 |
-
for index, row in tqdm(test_df.iterrows(), total=len(test_df)):
|
112 |
-
row["comment_text"] = clean_sentence(row["comment_text"])
|
113 |
-
|
114 |
-
|
115 |
-
# Some texts will get reduced to the empty string. Let's remove them first
|
116 |
-
print("Removing empty texts...")
|
117 |
-
train_df = train_df.loc[train_df["comment_text"] != ""]
|
118 |
-
test_df = test_df.loc[test_df["comment_text"] != ""]
|
119 |
-
|
120 |
-
# Get rid of any duplicates we made
|
121 |
-
print("Removing duplicate entries...")
|
122 |
-
train_df = train_df.drop_duplicates(subset=["comment_text"])
|
123 |
-
test_df = test_df.drop_duplicates(subset=["comment_text"])
|
124 |
-
|
125 |
-
print("Creating binary column...")
|
126 |
-
|
127 |
-
# Make the new binary column
|
128 |
-
train_df["label"] = train_df.apply(make_binary_label, axis=1)
|
129 |
-
test_df["label"] = test_df.apply(make_binary_label, axis=1)
|
130 |
-
|
131 |
-
# Remove all other classification columns
|
132 |
-
train_df = train_df.drop(columns=TOXIC_COLUMNS)
|
133 |
-
test_df = test_df.drop(columns=TOXIC_COLUMNS)
|
134 |
-
|
135 |
-
print("Creating eval split...")
|
136 |
-
|
137 |
-
# Shuffle the current train split
|
138 |
-
train_df = train_df.sample(frac=1, random_state=seed)
|
139 |
-
|
140 |
-
# The new size of the train split
|
141 |
-
train_size = math.floor(len(train_df) * 0.8)
|
142 |
-
|
143 |
-
# Separate into train and eval splits
|
144 |
-
eval_df = train_df[train_size:]
|
145 |
-
train_df = train_df[:train_size]
|
146 |
-
|
147 |
-
# print("Saving to disk...")
|
148 |
-
with open("train.csv", "w") as f:
|
149 |
-
train_df.to_csv(f)
|
150 |
-
with open("evaluation.csv", "w") as f:
|
151 |
-
eval_df.to_csv(f)
|
152 |
-
with open("test.csv", "w") as f:
|
153 |
-
test_df.to_csv(f)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|