"""TODO(IndicSentiment): Add a description here.""" import json import datasets _HOMEPAGE = "" _CITATION = """\ """ _DESCRIPTION = """\ """ _LANG = ["telugu"] _URL = "https://huggingface.co/datasets/Sakshamrzt/IndicNLP-Multilingual/tree/main/{language}-{split}.jsonl" _VERSION = datasets.Version("1.0.0", "First version of IndicNLP-Multilingual") class IndicNLP-Multilingual(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ datasets.BuilderConfig( name=f"news-{lang}", description=f"translated sentiment data for {lang}", version=_VERSION, ) for lang in _LANG ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION + self.config.description, features=datasets.Features( { "news": datasets.Value("string"), "class": datasets.Value("string"), } ), homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" *translation_prefix, language = self.config.name.split("-") splits = {datasets.Split.TRAIN: "train", datasets.Split.TEST: "test"} data_urls = { split: _URL.format(language=language, split=splits[split]) for split in splits } dl_paths = dl_manager.download(data_urls) return [ datasets.SplitGenerator( name=split, gen_kwargs={"filepath": dl_paths[split]}, ) for split in splits ] def _generate_examples(self, filepath): """Yields examples.""" with open(filepath, encoding="utf-8") as f: for idx, row in enumerate(f): data = json.loads(row) yield idx, data