MyspeechASR / myspeechasr.py
sidd97's picture
First version of MySpeechAsr
a22e847
raw
history blame
11.4 kB
# -*- coding: utf-8 -*-
"""LibrispeechASR.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1FrAIWodQp3jV9v_u_NSYIfzB-q1LRTi8
"""
#!pip install datasets
#!pip install transformers
# imports
from transformers import TrainingArguments, Trainer, pipeline, AutoTokenizer, AutoConfig, AutoModelForSequenceClassification, HfArgumentParser, EvalPrediction
from datasets import list_datasets, load_dataset, Dataset
from pprint import pprint
import torch
from datasets.tasks import AutomaticSpeechRecognition
#from __future__ import absolute_import, division, print_function
import glob
import os
import datasets
_CITATION = """\
@inproceedings{panayotov2015librispeech,
title={Librispeech: an ASR corpus based on public domain audio books},
author={Panayotov, Vassil and Chen, Guoguo and Povey, Daniel and Khudanpur, Sanjeev},
booktitle={Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on},
pages={5206--5210},
year={2015},
organization={IEEE}
}
"""
_DESCRIPTION = """\
LibriSpeech is a corpus of approximately 1000 hours of read English speech with sampling rate of 16 kHz,
prepared by Vassil Panayotov with the assistance of Daniel Povey. The data is derived from read
audiobooks from the LibriVox project, and has been carefully segmented and aligned.87
"""
_URL = "http://www.openslr.org/12"
_DL_URL = "http://www.openslr.org/resources/12/"
_DL_URLS = {
"clean": {
"dev": _DL_URL + "dev-clean.tar.gz",
"test": _DL_URL + "test-clean.tar.gz",
"train.100": _DL_URL + "train-clean-100.tar.gz",
"train.360": _DL_URL + "train-clean-360.tar.gz",
},
"other": {
"test": _DL_URL + "test-other.tar.gz",
"dev": _DL_URL + "dev-other.tar.gz",
"train.500": _DL_URL + "train-other-500.tar.gz",
},
"all": {
"dev.clean": _DL_URL + "dev-clean.tar.gz",
"dev.other": _DL_URL + "dev-other.tar.gz",
"test.clean": _DL_URL + "test-clean.tar.gz",
"test.other": _DL_URL + "test-other.tar.gz",
"train.clean.100": _DL_URL + "train-clean-100.tar.gz",
"train.clean.360": _DL_URL + "train-clean-360.tar.gz",
"train.other.500": _DL_URL + "train-other-500.tar.gz",
},
}
class MyspeechASRConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
"""
Args:
data_dir: `string`, the path to the folder containing the files in the
downloaded .tar
citation: `string`, citation for the data set
url: `string`, url for information about the data set
**kwargs: keyword arguments forwarded to super.
"""
super(MyspeechASRConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
class MyspeechASR(datasets.GeneratorBasedBuilder):
"""Librispeech dataset."""
DEFAULT_WRITER_BATCH_SIZE = 256
DEFAULT_CONFIG_NAME = "all"
BUILDER_CONFIGS = [
MyspeechASRConfig(name="clean", description="'Clean' speech."),
MyspeechASRConfig(name="other", description="'Other', more challenging, speech."),
MyspeechASRConfig(name="all", description="Combined clean and other dataset."),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"file": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000),
"text": datasets.Value("string"),
"speaker_id": datasets.Value("int64"),
"chapter_id": datasets.Value("int64"),
"id": datasets.Value("string"),
}
),
supervised_keys=("file", "text"),
homepage=_URL,
citation=_CITATION,
task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")],
)
def _split_generators(self, dl_manager):
archive_path = dl_manager.download(_DL_URLS[self.config.name])
# (Optional) In non-streaming mode, we can extract the archive locally to have actual local audio files:
local_extracted_archive = dl_manager.extract(archive_path) if not dl_manager.is_streaming else {}
if self.config.name == "clean":
train_splits = [
datasets.SplitGenerator(
name="train.100",
gen_kwargs={
"local_extracted_archive": local_extracted_archive.get("train.100"),
"files": dl_manager.iter_archive(archive_path["train.100"]),
},
),
datasets.SplitGenerator(
name="train.360",
gen_kwargs={
"local_extracted_archive": local_extracted_archive.get("train.360"),
"files": dl_manager.iter_archive(archive_path["train.360"]),
},
),
]
dev_splits = [
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"local_extracted_archive": local_extracted_archive.get("dev"),
"files": dl_manager.iter_archive(archive_path["dev"]),
},
)
]
test_splits = [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"local_extracted_archive": local_extracted_archive.get("test"),
"files": dl_manager.iter_archive(archive_path["test"]),
},
)
]
elif self.config.name == "other":
train_splits = [
datasets.SplitGenerator(
name="train.500",
gen_kwargs={
"local_extracted_archive": local_extracted_archive.get("train.500"),
"files": dl_manager.iter_archive(archive_path["train.500"]),
},
)
]
dev_splits = [
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"local_extracted_archive": local_extracted_archive.get("dev"),
"files": dl_manager.iter_archive(archive_path["dev"]),
},
)
]
test_splits = [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"local_extracted_archive": local_extracted_archive.get("test"),
"files": dl_manager.iter_archive(archive_path["test"]),
},
)
]
elif self.config.name == "all":
train_splits = [
datasets.SplitGenerator(
name="train.clean.100",
gen_kwargs={
"local_extracted_archive": local_extracted_archive.get("train.clean.100"),
"files": dl_manager.iter_archive(archive_path["train.clean.100"]),
},
),
datasets.SplitGenerator(
name="train.clean.360",
gen_kwargs={
"local_extracted_archive": local_extracted_archive.get("train.clean.360"),
"files": dl_manager.iter_archive(archive_path["train.clean.360"]),
},
),
datasets.SplitGenerator(
name="train.other.500",
gen_kwargs={
"local_extracted_archive": local_extracted_archive.get("train.other.500"),
"files": dl_manager.iter_archive(archive_path["train.other.500"]),
},
),
]
dev_splits = [
datasets.SplitGenerator(
name="validation.clean",
gen_kwargs={
"local_extracted_archive": local_extracted_archive.get("validation.clean"),
"files": dl_manager.iter_archive(archive_path["dev.clean"]),
},
),
datasets.SplitGenerator(
name="validation.other",
gen_kwargs={
"local_extracted_archive": local_extracted_archive.get("validation.other"),
"files": dl_manager.iter_archive(archive_path["dev.other"]),
},
),
]
test_splits = [
datasets.SplitGenerator(
name="test.clean",
gen_kwargs={
"local_extracted_archive": local_extracted_archive.get("test.clean"),
"files": dl_manager.iter_archive(archive_path["test.clean"]),
},
),
datasets.SplitGenerator(
name="test.other",
gen_kwargs={
"local_extracted_archive": local_extracted_archive.get("test.other"),
"files": dl_manager.iter_archive(archive_path["test.other"]),
},
),
]
return train_splits + dev_splits + test_splits
def _generate_examples(self, files, local_extracted_archive):
"""Generate examples from a LibriSpeech archive_path."""
key = 0
audio_data = {}
transcripts = []
for path, f in files:
if path.endswith(".flac"):
id_ = path.split("/")[-1][: -len(".flac")]
audio_data[id_] = f.read()
elif path.endswith(".trans.txt"):
for line in f:
if line:
line = line.decode("utf-8").strip()
id_, transcript = line.split(" ", 1)
audio_file = f"{id_}.flac"
speaker_id, chapter_id = [int(el) for el in id_.split("-")[:2]]
audio_file = (
os.path.join(local_extracted_archive, audio_file)
if local_extracted_archive
else audio_file
)
transcripts.append(
{
"id": id_,
"speaker_id": speaker_id,
"chapter_id": chapter_id,
"file": audio_file,
"text": transcript,
}
)
if audio_data and len(audio_data) == len(transcripts):
for transcript in transcripts:
audio = {"path": transcript["file"], "bytes": audio_data[transcript["id"]]}
yield key, {"audio": audio, **transcript}
key += 1
audio_data = {}
transcripts = []