File size: 1,442 Bytes
			
			| 0635b3b 767339f 0635b3b 767339f 0635b3b f73fb2c 0635b3b 104de59 0635b3b c7a196e 1452116 104de59 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 | ---
language:
- en
license: mit
size_categories:
- 1M<n<10M
task_categories:
- visual-question-answering
- image-text-to-text
pretty_name: ABC-Pretraining-Data
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
dataset_info:
  features:
  - name: caption
    dtype: string
  - name: url
    dtype: string
  - name: id
    dtype: int64
  - name: image
    dtype: string
  - name: negatives
    sequence: int64
  splits:
  - name: train
    num_bytes: 2289772991
    num_examples: 2252041
  download_size: 1855548818
  dataset_size: 2289772991
tags:
- visual
---
## ABC Pretraining Data
<!-- Provide a quick summary of the dataset. -->
This the the pretraining data for ABC. This dataset is derived from Google's [Conceptual Captions](https://ai.google.com/research/ConceptualCaptions/) dataset.
The each item in the dataset contain a URL where the corresponding image can be downloaded. Full dataaset is ~300 GB of images.
## Paper and Website
For more information, please refer to [Website](https://tiger-ai-lab.github.io/ABC/).
## Citation
```
@misc{schneider2025abcachievingbettercontrol,
      title={ABC: Achieving Better Control of Multimodal Embeddings using VLMs}, 
      author={Benjamin Schneider and Florian Kerschbaum and Wenhu Chen},
      year={2025},
      eprint={2503.00329},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2503.00329}, 
}
``` | 
