harpreetsahota commited on
Commit
652067e
·
verified ·
1 Parent(s): ec8fbf4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +135 -71
README.md CHANGED
@@ -60,12 +60,11 @@ dataset_summary: '
60
  '
61
  ---
62
 
63
- # Dataset Card for AVM_Segmentation
64
-
65
- <!-- Provide a quick summary of the dataset. -->
66
-
67
 
 
68
 
 
69
 
70
 
71
  This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 6763 samples.
@@ -97,130 +96,195 @@ session = fo.launch_app(dataset)
97
 
98
  ### Dataset Description
99
 
100
- <!-- Provide a longer summary of what this dataset is. -->
101
 
 
102
 
 
103
 
104
- - **Curated by:** [More Information Needed]
105
- - **Funded by [optional]:** [More Information Needed]
106
- - **Shared by [optional]:** [More Information Needed]
107
- - **Language(s) (NLP):** en
108
- - **License:** [More Information Needed]
109
 
110
- ### Dataset Sources [optional]
111
 
112
- <!-- Provide the basic links for the dataset. -->
113
 
114
- - **Repository:** [More Information Needed]
115
- - **Paper [optional]:** [More Information Needed]
116
- - **Demo [optional]:** [More Information Needed]
117
 
118
  ## Uses
119
 
120
- <!-- Address questions around how the dataset is intended to be used. -->
121
-
122
  ### Direct Use
123
 
124
- <!-- This section describes suitable use cases for the dataset. -->
125
-
126
- [More Information Needed]
 
 
 
127
 
128
  ### Out-of-Scope Use
129
 
130
- <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
131
-
132
- [More Information Needed]
 
 
133
 
134
  ## Dataset Structure
135
 
136
- <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
137
-
138
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
139
 
140
  ## Dataset Creation
141
 
142
  ### Curation Rationale
143
 
144
- <!-- Motivation for the creation of this dataset. -->
145
-
146
- [More Information Needed]
147
 
148
  ### Source Data
149
 
150
- <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
151
-
152
  #### Data Collection and Processing
153
 
154
- <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
155
-
156
- [More Information Needed]
 
 
157
 
158
  #### Who are the source data producers?
159
 
160
- <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
161
-
162
- [More Information Needed]
163
-
164
- ### Annotations [optional]
165
 
166
- <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
167
 
168
- #### Annotation process
169
-
170
- <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
171
-
172
- [More Information Needed]
173
 
 
 
 
 
174
  #### Who are the annotators?
175
 
176
- <!-- This section describes the people or systems who created the annotations. -->
177
-
178
- [More Information Needed]
179
 
180
- #### Personal and Sensitive Information
181
 
182
- <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
183
-
184
- [More Information Needed]
 
 
185
 
186
  ## Bias, Risks, and Limitations
187
 
188
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
189
 
190
- [More Information Needed]
 
 
 
 
191
 
192
- ### Recommendations
193
 
194
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
 
195
 
196
- Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
197
 
198
- ## Citation [optional]
 
 
 
199
 
200
- <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
201
 
202
- **BibTeX:**
 
 
 
203
 
204
- [More Information Needed]
 
 
205
 
206
- **APA:**
 
 
207
 
208
- [More Information Needed]
209
 
210
- ## Glossary [optional]
 
 
 
 
 
 
 
 
211
 
212
- <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
 
213
 
214
- [More Information Needed]
215
 
216
- ## More Information [optional]
 
 
 
217
 
218
- [More Information Needed]
 
 
 
 
 
219
 
220
- ## Dataset Card Authors [optional]
221
 
222
- [More Information Needed]
 
223
 
224
  ## Dataset Card Contact
225
 
226
- [More Information Needed]
 
 
 
 
 
 
 
60
  '
61
  ---
62
 
63
+ # Dataset Card for AVM_Segmentation# Dataset Card for AVM (Around View Monitoring) Semantic Segmentation Dataset
 
 
 
64
 
65
+ ![image/png](avm_segmentation-mq.gif)
66
 
67
+ This repository provides a FiftyOne-compatible version of the AVM semantic segmentation dataset for autonomous parking systems, with enhanced metadata and visualization capabilities.
68
 
69
 
70
  This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 6763 samples.
 
96
 
97
  ### Dataset Description
98
 
99
+ The AVM dataset is a specialized computer vision dataset designed for training semantic segmentation models for autonomous parking systems. It contains bird's-eye view images from around-view monitoring cameras with pixel-level annotations for parking space detection and obstacle avoidance.
100
 
101
+ * **Curated by:** Chulhoon Jang and team at [original repository](https://github.com/ChulhoonJang/avm_dataset)
102
 
103
+ * **FiftyOne Integration by:** Harpreet Sahota (Voxel51)
104
 
105
+ * **License:** Please refer to the [original dataset repository](https://github.com/ChulhoonJang/avm_dataset) for license information (which currently has no License)
 
 
 
 
106
 
107
+ ### Dataset Sources
108
 
109
+ * **Original Repository:** [https://github.com/ChulhoonJang/avm_dataset](https://github.com/ChulhoonJang/avm_dataset)
110
 
 
 
 
111
 
112
  ## Uses
113
 
 
 
114
  ### Direct Use
115
 
116
+ This dataset is designed for:
117
+ - **Autonomous Parking Systems**: Training models to detect and navigate into parking spaces
118
+ - **Semantic Segmentation Research**: Benchmarking segmentation algorithms on fisheye/bird's-eye view images
119
+ - **Parking Space Detection**: Identifying available vs occupied parking spots
120
+ - **Obstacle Detection**: Recognizing curbs, pillars, walls, and other vehicles
121
+ - **360° Surround View Systems**: Enhancing camera-based parking assistance features
122
 
123
  ### Out-of-Scope Use
124
 
125
+ This dataset should NOT be used for:
126
+ - Forward-facing autonomous driving (it's specifically bird's-eye view)
127
+ - General object detection (annotations are polygon-based for segmentation)
128
+ - High-speed navigation (designed for low-speed parking scenarios)
129
+ - Pedestrian detection (pedestrians are not annotated)
130
 
131
  ## Dataset Structure
132
 
133
+ ### Overview
134
+ - **Total Images**: 6,763 (320 x 160 pixels)
135
+ - **Training Set**: 4,057 images
136
+ - **Test Set**: 2,706 images
137
+ - **Outdoor Images**: 3,614
138
+ - **Indoor Images**: 3,149
139
+
140
+ ### Semantic Classes
141
+ The dataset contains 5 semantic classes with specific RGB color mappings:
142
+
143
+ | Class | Description | RGB Color | Hex Color |
144
+ |-------|------------|-----------|-----------|
145
+ | 0 | Free Space (drivable area) | [0, 0, 255] | #0000FF (Blue) |
146
+ | 1 | Marker (parking lines) | [255, 255, 255] | #FFFFFF (White) |
147
+ | 2 | Vehicle (other cars) | [255, 0, 0] | #FF0000 (Red) |
148
+ | 3 | Other (curbs, pillars, walls) | [0, 255, 0] | #00FF00 (Green) |
149
+ | 4 | Ego Vehicle (camera car) | [0, 0, 0] | #000000 (Black) |
150
+
151
+ ### FiftyOne Fields
152
+
153
+ When parsed into FiftyOne, each sample includes:
154
+
155
+ | Field | Type | Description |
156
+ |-------|------|-------------|
157
+ | `filepath` | string | Path to the image file |
158
+ | `split` | string | "train" or "test" |
159
+ | `sample_id` | int | Unique identifier from filename |
160
+ | `environment` | Classification | "indoor" or "outdoor" (heuristic based on curb presence) |
161
+ | `parking_type` | Classification | "perpendicular" or "parallel" |
162
+ | `slot_type` | Classification | "closed", "opened", or "no_marker" |
163
+ | `polygon_annotations` | Polylines | Normalized polygon coordinates for each object |
164
+ | `ground_truth` | Segmentation | Pixel-level segmentation mask |
165
+ | `classes_present` | list | Classes present in the image |
166
+ | `num_markers` | int | Count of parking marker polygons |
167
+ | `num_vehicles` | int | Count of vehicle polygons |
168
+ | `has_curb` | bool | Whether curb is present |
169
+ | `has_ego_vehicle` | bool | Whether ego vehicle is annotated |
170
 
171
  ## Dataset Creation
172
 
173
  ### Curation Rationale
174
 
175
+ The dataset was created to address the lack of bird's-eye view datasets for autonomous parking systems. Most existing datasets focus on forward-facing cameras, but parking assistance requires a top-down perspective to accurately detect parking spaces and navigate safely.
 
 
176
 
177
  ### Source Data
178
 
 
 
179
  #### Data Collection and Processing
180
 
181
+ - **Camera Setup**: Around View Monitoring (AVM) system with fisheye cameras
182
+ - **View Angle**: Bird's-eye view (top-down perspective)
183
+ - **Resolution**: 320 x 160 pixels (optimized for embedded systems)
184
+ - **Environments**: Real parking lots (both indoor parking garages and outdoor lots)
185
+ - **Conditions**: Various lighting conditions, weather (sunny, cloudy, rainy)
186
 
187
  #### Who are the source data producers?
188
 
189
+ The original dataset was produced by researchers developing autonomous parking systems, likely in an academic or industrial research setting.
 
 
 
 
190
 
191
+ ### Annotations
192
 
193
+ #### Annotation Process
 
 
 
 
194
 
195
+ 1. **Polygon Annotation**: Each object is annotated with precise polygon boundaries in YAML format
196
+ 2. **Semantic Masks**: Ground truth masks are generated from polygon annotations
197
+ 3. **Multi-polygon Support**: Multiple instances of the same class are supported (e.g., multiple vehicles)
198
+ 4. **Coordinate System**: Polygons use image coordinates (0-319 x 0-159)
199
  #### Who are the annotators?
200
 
201
+ Information about specific annotators is not provided in the original dataset documentation.
 
 
202
 
203
+ ## Personal and Sensitive Information
204
 
205
+ The dataset contains images from parking lots but does not include:
206
+ - License plate information (resolution too low)
207
+ - Personally identifiable information
208
+ - Pedestrian annotations
209
+ - Location-specific information
210
 
211
  ## Bias, Risks, and Limitations
212
 
213
+ ### Known Limitations
214
 
215
+ 1. **Limited Resolution**: 320x160 pixels may not capture fine details
216
+ 2. **Geographic Bias**: Dataset may be from specific geographic regions
217
+ 3. **Weather Conditions**: Limited representation of extreme weather
218
+ 4. **Vehicle Types**: May not include all vehicle types (trucks, motorcycles, etc.)
219
+ 5. **Parking Styles**: Primarily perpendicular and parallel parking
220
 
221
+ ### Technical Challenges
222
 
223
+ - **Indoor Reflections**: Reflected lights can be mistaken for parking markers
224
+ - **Fisheye Distortion**: Bird's-eye view introduces geometric distortions
225
+ - **Class Imbalance**: Some classes (like curbs) appear less frequently
226
 
227
+ ## Recommendations
228
 
229
+ 1. **Augmentation**: Apply data augmentation to improve model robustness
230
+ 2. **Validation**: Test models on diverse parking environments not in the dataset
231
+ 3. **Resolution**: Consider upscaling techniques if higher resolution is needed
232
+ 4. **Edge Cases**: Be aware that the dataset may not cover all parking scenarios
233
 
 
234
 
235
+ ### Exploring the Dataset
236
+ ```python
237
+ # View class distribution
238
+ print(dataset.count_values("classes_present"))
239
 
240
+ # Filter indoor vs outdoor
241
+ indoor = dataset.match(F("environment.label") == "indoor")
242
+ outdoor = dataset.match(F("environment.label") == "outdoor")
243
 
244
+ # Samples with multiple vehicles
245
+ multi_vehicle = dataset.match(F("num_vehicles") > 2)
246
+ ```
247
 
248
+ ## Citation
249
 
250
+ ### BibTeX
251
+ ```bibtex
252
+ @dataset{avm_dataset,
253
+ title={AVM (Around View Monitoring) System Datasets for Auto Parking},
254
+ author={Chulhoon Jang and others},
255
+ year={2020},
256
+ url={https://github.com/ChulhoonJang/avm_dataset}
257
+ }
258
+ ```
259
 
260
+ ### APA
261
+ Jang, C., et al. (2020). AVM (Around View Monitoring) System Datasets for Auto Parking. GitHub. https://github.com/ChulhoonJang/avm_dataset
262
 
263
+ ## More Information
264
 
265
+ ### Related Resources
266
+ - [Original Dataset Repository](https://github.com/ChulhoonJang/avm_dataset)
267
+ - [FiftyOne Documentation](https://docs.voxel51.com)
268
+ - Implementation code for semantic segmentation models (link in original repo)
269
 
270
+ ### Dataset Statistics
271
+ - Average polygons per class:
272
+ - Ego vehicle: 1.0 polygons (fixed position)
273
+ - Markers: 2.6 polygons per image
274
+ - Vehicles: 2.1 polygons per image
275
+ - Curbs: 1.4 polygons per image (when present)
276
 
277
+ ## Dataset Card Authors
278
 
279
+ - **FiftyOne Integration**: Harpreet Sahota (Voxel51)
280
+ - **Original Dataset**: Chulhoon Jang and team
281
 
282
  ## Dataset Card Contact
283
 
284
+ - **Original dataset**: See [original repository](https://github.com/ChulhoonJang/avm_dataset)
285
+
286
+ ---
287
+
288
+ ## Acknowledgments
289
+
290
+ Thanks to the original dataset creators for making this valuable resource available to the research community. The FiftyOne integration enhances the dataset's usability for modern computer vision workflows.