andandandand commited on
Commit
55b429d
·
verified ·
1 Parent(s): c64433f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +108 -126
README.md CHANGED
@@ -3,72 +3,22 @@ annotations_creators: []
3
  language: en
4
  license: mit
5
  size_categories:
6
- - 10K<n<100K
7
  task_categories:
8
- - image-classification
9
  task_ids: []
10
  pretty_name: asl-mnist
11
  tags:
12
- - fiftyone
13
- - image
14
- - image-classification
15
  repo_type: dataset
16
- dataset_summary: '
17
-
18
-
19
-
20
-
21
- This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 34627 samples.
22
-
23
-
24
- ## Installation
25
-
26
-
27
- If you haven''t already, install FiftyOne:
28
-
29
-
30
- ```bash
31
-
32
- pip install -U fiftyone
33
-
34
- ```
35
-
36
-
37
- ## Usage
38
-
39
-
40
- ```python
41
-
42
- import fiftyone as fo
43
-
44
- from fiftyone.utils.huggingface import load_from_hub
45
-
46
-
47
- # Load the dataset
48
-
49
- # Note: other available arguments include ''max_samples'', etc
50
-
51
- dataset = load_from_hub("andandandand/American-Sign-Language-MNIST")
52
-
53
-
54
- # Launch the App
55
-
56
- session = fo.launch_app(dataset)
57
-
58
- ```
59
-
60
- '
61
  ---
62
 
63
- # Dataset Card for asl-mnist
64
-
65
- <!-- Provide a quick summary of the dataset. -->
66
-
67
 
68
-
69
-
70
-
71
- This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 34627 samples.
72
 
73
  ## Installation
74
 
@@ -92,135 +42,167 @@ dataset = load_from_hub("andandandand/American-Sign-Language-MNIST")
92
  session = fo.launch_app(dataset)
93
  ```
94
 
95
-
96
  ## Dataset Details
97
 
98
  ### Dataset Description
99
 
100
- <!-- Provide a longer summary of what this dataset is. -->
101
 
 
102
 
103
-
104
- - **Curated by:** [More Information Needed]
105
- - **Funded by [optional]:** [More Information Needed]
106
- - **Shared by [optional]:** [More Information Needed]
107
  - **Language(s) (NLP):** en
108
- - **License:** mit
109
-
110
- ### Dataset Sources [optional]
111
 
112
- <!-- Provide the basic links for the dataset. -->
113
 
114
- - **Repository:** [More Information Needed]
115
- - **Paper [optional]:** [More Information Needed]
116
- - **Demo [optional]:** [More Information Needed]
117
 
118
  ## Uses
119
 
120
- <!-- Address questions around how the dataset is intended to be used. -->
121
-
122
  ### Direct Use
123
 
124
- <!-- This section describes suitable use cases for the dataset. -->
125
-
126
- [More Information Needed]
 
 
 
127
 
128
  ### Out-of-Scope Use
129
 
130
- <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
131
-
132
- [More Information Needed]
 
 
133
 
134
  ## Dataset Structure
135
 
136
- <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
 
 
 
 
137
 
138
- [More Information Needed]
 
 
 
 
 
 
 
 
 
139
 
140
  ## Dataset Creation
141
 
142
  ### Curation Rationale
143
 
144
- <!-- Motivation for the creation of this dataset. -->
145
-
146
- [More Information Needed]
 
 
147
 
148
  ### Source Data
149
 
150
- <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
151
-
152
  #### Data Collection and Processing
153
 
154
- <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
155
-
156
- [More Information Needed]
157
 
158
- #### Who are the source data producers?
 
 
 
 
159
 
160
- <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
161
 
162
- [More Information Needed]
163
 
164
- ### Annotations [optional]
165
 
166
- <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
167
 
168
  #### Annotation process
169
 
170
- <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
171
-
172
- [More Information Needed]
 
 
173
 
174
  #### Who are the annotators?
175
 
176
- <!-- This section describes the people or systems who created the annotations. -->
177
-
178
- [More Information Needed]
179
-
180
- #### Personal and Sensitive Information
181
 
182
- <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
183
 
184
- [More Information Needed]
185
 
186
  ## Bias, Risks, and Limitations
187
 
188
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
189
 
190
- [More Information Needed]
 
 
 
 
191
 
192
- ### Recommendations
193
 
194
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
 
 
195
 
196
- Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
197
 
198
- ## Citation [optional]
 
 
 
 
 
199
 
200
- <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
201
 
202
  **BibTeX:**
 
 
 
 
 
 
 
 
 
203
 
204
- [More Information Needed]
205
-
206
- **APA:**
207
-
208
- [More Information Needed]
209
-
210
- ## Glossary [optional]
211
-
212
- <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
213
 
214
- [More Information Needed]
 
 
 
215
 
216
- ## More Information [optional]
217
 
218
- [More Information Needed]
 
 
 
219
 
220
- ## Dataset Card Authors [optional]
221
 
222
- [More Information Needed]
223
 
224
  ## Dataset Card Contact
225
 
226
- [More Information Needed]
 
3
  language: en
4
  license: mit
5
  size_categories:
6
+ - "10K<n<100K"
7
  task_categories:
8
+ - image-classification
9
  task_ids: []
10
  pretty_name: asl-mnist
11
  tags:
12
+ - fiftyone
13
+ - image
14
+ - image-classification
15
  repo_type: dataset
16
+ dataset_summary: "This is a FiftyOne dataset with 34,627 samples of American Sign Language (ASL) alphabet images converted from the original Kaggle Sign Language MNIST dataset. The dataset contains 28x28 pixel grayscale images of hand gestures representing 24 letters of the ASL alphabet (excluding J and Z which require motion)."
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  ---
18
 
19
+ # Dataset Card for ASL-MNIST
 
 
 
20
 
21
+ This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 34,627 samples of American Sign Language (ASL) alphabet images, converted from the original Kaggle Sign Language MNIST dataset into a format optimized for computer vision workflows.
 
 
 
22
 
23
  ## Installation
24
 
 
42
  session = fo.launch_app(dataset)
43
  ```
44
 
 
45
  ## Dataset Details
46
 
47
  ### Dataset Description
48
 
49
+ This dataset contains 34,627 grayscale images of American Sign Language (ASL) alphabet hand gestures. Each image is 28x28 pixels and represents one of 24 letters from the ASL alphabet. The dataset excludes the letters J and Z as these require motion to be properly signed and cannot be represented in static images.
50
 
51
+ The original data was sourced from Kaggle's Sign Language MNIST dataset and has been converted into individual image files with proper FiftyOne annotations for easy visualization, querying, and analysis.
52
 
53
+ - **Curated by:** Antonio Rueda-Toicen (Voxel51)
54
+ - **Funded by:** Voxel51
55
+ - **Shared by:** Voxel51
 
56
  - **Language(s) (NLP):** en
57
+ - **License:** MIT
 
 
58
 
59
+ ### Dataset Sources
60
 
61
+ - **Original Repository:** [Kaggle Sign Language MNIST](https://www.kaggle.com/datasets/datamunge/sign-language-mnist)
62
+ - **Processing Code:** [Google Colab Notebook](https://github.com/andandandand/practical-computer-vision/blob/main/ASL_from_Kaggle_to_FiftyOne.ipynb) - Converted from CSV format to individual JPG images using FiftyOne
63
+ - **FiftyOne Documentation:** [https://github.com/voxel51/fiftyone](https://github.com/voxel51/fiftyone)
64
 
65
  ## Uses
66
 
 
 
67
  ### Direct Use
68
 
69
+ This dataset is ideal for:
70
+ - **Computer vision research**: Training and evaluating image classification models
71
+ - **Sign language recognition**: Developing ASL alphabet recognition systems
72
+ - **Educational purposes**: Teaching machine learning concepts with a meaningful, accessible dataset
73
+ - **Prototyping**: Quick experimentation with image classification algorithms
74
+ - **FiftyOne demonstrations**: Showcasing dataset visualization and management capabilities
75
 
76
  ### Out-of-Scope Use
77
 
78
+ This dataset should not be used for:
79
+ - **Complete ASL communication systems**: Missing J and Z letters, and doesn't include words, phrases, or grammar
80
+ - **Real-time sign language interpretation**: Static images don't capture the dynamic nature of full ASL communication
81
+ - **Medical or accessibility applications**: Without proper validation in clinical settings
82
+ - **Production ASL recognition systems**: Without additional data augmentation and validation
83
 
84
  ## Dataset Structure
85
 
86
+ The dataset contains 34,627 samples split into training and test sets:
87
+ - **Training samples**: ~27,455 images
88
+ - **Test samples**: ~7,172 images
89
+ - **Image format**: 28x28 pixel grayscale JPG images
90
+ - **Labels**: 24 ASL alphabet letters (A-I, K-Y, excluding J and Z)
91
 
92
+ ### Label Mapping
93
+
94
+ The dataset uses the following label mapping:
95
+ ```
96
+ 0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'E', 5: 'F', 6: 'G', 7: 'H', 8: 'I',
97
+ 10: 'K', 11: 'L', 12: 'M', 13: 'N', 14: 'O', 15: 'P', 16: 'Q', 17: 'R',
98
+ 18: 'S', 19: 'T', 20: 'U', 21: 'V', 22: 'W', 23: 'X', 24: 'Y'
99
+ ```
100
+
101
+ Note: Labels 9 (J) and 25 (Z) are excluded as these letters require motion in ASL.
102
 
103
  ## Dataset Creation
104
 
105
  ### Curation Rationale
106
 
107
+ This dataset was created to provide an easily accessible, well-structured version of the ASL alphabet dataset for computer vision research and education. The conversion to FiftyOne format enables:
108
+ - Rich visualization and exploration capabilities
109
+ - Advanced querying and filtering
110
+ - Seamless integration with machine learning workflows
111
+ - Better understanding of dataset characteristics and potential biases
112
 
113
  ### Source Data
114
 
 
 
115
  #### Data Collection and Processing
116
 
117
+ The original data came from the Kaggle Sign Language MNIST dataset. The processing pipeline included:
 
 
118
 
119
+ 1. **Download**: Retrieved CSV files from Kaggle using the Kaggle API
120
+ 2. **Image conversion**: Converted pixel arrays from CSV rows into 28x28 grayscale images
121
+ 3. **File organization**: Saved images as individual JPG files with systematic naming
122
+ 4. **Annotation**: Created FiftyOne classification labels for each image
123
+ 5. **Metadata computation**: Added image metadata for enhanced searchability
124
 
125
+ Processing was performed using Python with pandas, PIL, NumPy, and FiftyOne libraries.
126
 
127
+ #### Who are the source data producers?
128
 
129
+ The original dataset was created by the Kaggle user 'datamunge' and represents hand gesture images collected for ASL alphabet recognition research. The specific methodology for the original data collection is not detailed in the source.
130
 
131
+ ### Annotations
132
 
133
  #### Annotation process
134
 
135
+ Annotations were automatically generated during the conversion process:
136
+ - Each image received a classification label corresponding to its ASL letter
137
+ - Labels were mapped from numeric indices to letter strings
138
+ - Split information (train/test) was preserved as tags
139
+ - No manual annotation was required as labels were inherited from the original dataset
140
 
141
  #### Who are the annotators?
142
 
143
+ The original labels were provided in the source Kaggle dataset. The FiftyOne conversion and annotation formatting was performed by Antonio Rueda-Toicen at Voxel51.
 
 
 
 
144
 
145
+ ### Personal and Sensitive Information
146
 
147
+ The dataset contains images of human hands performing sign language gestures. While hands are visible, no faces or other personally identifiable information is included in the images. The 28x28 pixel resolution is too low to identify individuals from hand features alone.
148
 
149
  ## Bias, Risks, and Limitations
150
 
151
+ ### Known Limitations
152
 
153
+ - **Incomplete alphabet**: Missing J and Z letters limits complete ASL alphabet coverage
154
+ - **Static images only**: Cannot represent the dynamic/motion aspects of ASL
155
+ - **Limited diversity**: May not represent the full diversity of hand sizes, skin tones, or signing styles
156
+ - **Low resolution**: 28x28 pixels may not capture fine details important for real-world applications
157
+ - **Single signer perspective**: May not generalize well to different signing styles or hand appearances
158
 
159
+ ### Potential Biases
160
 
161
+ - **Demographic representation**: Unknown diversity in the original data collection
162
+ - **Lighting conditions**: Images may reflect specific lighting setups that don't generalize
163
+ - **Hand positioning**: May favor certain hand orientations or positions
164
+ - **Background consistency**: Controlled backgrounds may not reflect real-world conditions
165
 
166
+ ### Recommendations
167
 
168
+ Users should be aware of these limitations and consider:
169
+ - Supplementing with additional diverse ASL datasets for production use
170
+ - Validating model performance across different demographic groups
171
+ - Testing with real-world conditions and lighting variations
172
+ - Incorporating motion-based data for complete ASL recognition systems
173
+ - Consulting with ASL community members for culturally appropriate applications
174
 
175
+ ## Citation
176
 
177
  **BibTeX:**
178
+ ```bibtex
179
+ @dataset{rueda_toicen_2024_asl_mnist,
180
+ title={American Sign Language MNIST Dataset (FiftyOne Format)},
181
+ author={Rueda-Toicen, Antonio},
182
+ year={2024},
183
+ publisher={Hugging Face},
184
+ url={https://huggingface.co/datasets/andandandand/American-Sign-Language-MNIST}
185
+ }
186
+ ```
187
 
188
+ ## Glossary
 
 
 
 
 
 
 
 
189
 
190
+ - **ASL**: American Sign Language, a complete, natural language that uses hand gestures, facial expressions, and body language
191
+ - **FiftyOne**: An open-source tool for building high-quality datasets and computer vision models
192
+ - **MNIST**: A reference to the famous Modified National Institute of Standards and Technology database, indicating 28x28 pixel grayscale images
193
+ - **Classification**: The machine learning task of assigning a category or label to an input
194
 
195
+ ## More Information
196
 
197
+ For more information about FiftyOne and dataset management best practices, visit:
198
+ - [FiftyOne Documentation](https://docs.voxel51.com/)
199
+ - [FiftyOne GitHub Repository](https://github.com/voxel51/fiftyone)
200
+ - [Computer Vision Datasets Guide](https://docs.voxel51.com/user_guide/dataset_creation/index.html)
201
 
202
+ ## Dataset Card Authors
203
 
204
+ Antonio Rueda-Toicen (Voxel51)
205
 
206
  ## Dataset Card Contact
207
 
208
+ Antonio Rueda-Toicen - [email protected]