andandandand commited on
Commit
c1640e3
·
verified ·
1 Parent(s): 1a9b505

Update readme

Browse files

updated link to LeCun's paper

Files changed (1) hide show
  1. README.md +8 -29
README.md CHANGED
@@ -12,60 +12,37 @@ tags:
12
  - fiftyone
13
  - image
14
  - image-classification
15
- description: 'Curated MNIST dataset with train/val/test splits, including predictions
16
- of different models: CLIP, LeNet, and retrained LeNet.'
17
  split_field: tags
18
  dataset_name: curated-mnist
19
  organization: andandandand
20
  commit_message: Add curated MNIST dataset with train/val/test splits
21
- dataset_summary: '
22
-
23
-
24
-
25
  ![image/png](dataset_preview.webp)
26
 
27
-
28
-
29
  This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 70000 samples.
30
 
31
-
32
  ## Installation
33
 
34
-
35
- If you haven''t already, install FiftyOne:
36
-
37
 
38
  ```bash
39
-
40
  pip install -U fiftyone
41
-
42
  ```
43
 
44
-
45
  ## Usage
46
 
47
-
48
  ```python
49
-
50
  import fiftyone as fo
51
-
52
  from fiftyone.utils.huggingface import load_from_hub
53
 
54
-
55
  # Load the dataset
56
-
57
- # Note: other available arguments include ''max_samples'', etc
58
-
59
  dataset = load_from_hub("andandandand/curated-mnist")
60
 
61
-
62
  # Launch the App
63
-
64
  session = fo.launch_app(dataset)
65
-
66
  ```
67
-
68
- '
69
  ---
70
 
71
  # Dataset Card for CuratedMNIST
@@ -122,9 +99,11 @@ The key additions include:
122
 
123
  - **Repository:** [andandandand/practical-computer-vision](https://github.com/andandandand/practical-computer-vision)
124
  - **Paper:**
125
- - For MNIST: [Gradient-Based Learning Applied to Document Recognition](http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf)
126
  - For CLIP: [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020)
127
- - **Demo:** [Image Classification and Dataset Curation with FiftyOne and PyTorch](https://colab.research.google.com/github/andandandand/practical-computer-vision/blob/main/notebooks/Image_Classification_and_Dataset_Curation_with_FiftyOne_and_PyTorch_Getting_Started.ipynb)
 
 
128
 
129
 
130
  ### Direct Use
 
12
  - fiftyone
13
  - image
14
  - image-classification
15
+ description: 'Curated MNIST dataset with train/val/test splits, including predictions of different models: CLIP, LeNet, and retrained LeNet.'
 
16
  split_field: tags
17
  dataset_name: curated-mnist
18
  organization: andandandand
19
  commit_message: Add curated MNIST dataset with train/val/test splits
20
+ dataset_summary: |
 
 
 
21
  ![image/png](dataset_preview.webp)
22
 
 
 
23
  This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 70000 samples.
24
 
 
25
  ## Installation
26
 
27
+ If you haven't already, install FiftyOne:
 
 
28
 
29
  ```bash
 
30
  pip install -U fiftyone
 
31
  ```
32
 
 
33
  ## Usage
34
 
 
35
  ```python
 
36
  import fiftyone as fo
 
37
  from fiftyone.utils.huggingface import load_from_hub
38
 
 
39
  # Load the dataset
40
+ # Note: other available arguments include 'max_samples', etc
 
 
41
  dataset = load_from_hub("andandandand/curated-mnist")
42
 
 
43
  # Launch the App
 
44
  session = fo.launch_app(dataset)
 
45
  ```
 
 
46
  ---
47
 
48
  # Dataset Card for CuratedMNIST
 
99
 
100
  - **Repository:** [andandandand/practical-computer-vision](https://github.com/andandandand/practical-computer-vision)
101
  - **Paper:**
102
+ - For MNIST: [Gradient-Based Learning Applied to Document Recognition](http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf)
103
  - For CLIP: [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020)
104
+ - **Source:**
105
+ - [Notebook on GitHub](https://github.com/andandandand/practical-computer-vision/blob/main/notebooks/Image_Classification_and_Dataset_Curation_with_FiftyOne_and_PyTorch_Getting_Started.ipynb)
106
+ - [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/andandandand/practical-computer-vision/blob/main/notebooks/Image_Classification_and_Dataset_Curation_with_FiftyOne_and_PyTorch_Getting_Started.ipynb)
107
 
108
 
109
  ### Direct Use