Datasets:
Tasks:
Image Classification
Modalities:
Image
Languages:
English
Size:
10K<n<100K
ArXiv:
Libraries:
FiftyOne
License:
Update readme
Browse filesupdated link to LeCun's paper
README.md
CHANGED
@@ -12,60 +12,37 @@ tags:
|
|
12 |
- fiftyone
|
13 |
- image
|
14 |
- image-classification
|
15 |
-
description: 'Curated MNIST dataset with train/val/test splits, including predictions
|
16 |
-
of different models: CLIP, LeNet, and retrained LeNet.'
|
17 |
split_field: tags
|
18 |
dataset_name: curated-mnist
|
19 |
organization: andandandand
|
20 |
commit_message: Add curated MNIST dataset with train/val/test splits
|
21 |
-
dataset_summary:
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |

|
26 |
|
27 |
-
|
28 |
-
|
29 |
This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 70000 samples.
|
30 |
|
31 |
-
|
32 |
## Installation
|
33 |
|
34 |
-
|
35 |
-
If you haven''t already, install FiftyOne:
|
36 |
-
|
37 |
|
38 |
```bash
|
39 |
-
|
40 |
pip install -U fiftyone
|
41 |
-
|
42 |
```
|
43 |
|
44 |
-
|
45 |
## Usage
|
46 |
|
47 |
-
|
48 |
```python
|
49 |
-
|
50 |
import fiftyone as fo
|
51 |
-
|
52 |
from fiftyone.utils.huggingface import load_from_hub
|
53 |
|
54 |
-
|
55 |
# Load the dataset
|
56 |
-
|
57 |
-
# Note: other available arguments include ''max_samples'', etc
|
58 |
-
|
59 |
dataset = load_from_hub("andandandand/curated-mnist")
|
60 |
|
61 |
-
|
62 |
# Launch the App
|
63 |
-
|
64 |
session = fo.launch_app(dataset)
|
65 |
-
|
66 |
```
|
67 |
-
|
68 |
-
'
|
69 |
---
|
70 |
|
71 |
# Dataset Card for CuratedMNIST
|
@@ -122,9 +99,11 @@ The key additions include:
|
|
122 |
|
123 |
- **Repository:** [andandandand/practical-computer-vision](https://github.com/andandandand/practical-computer-vision)
|
124 |
- **Paper:**
|
125 |
-
- For MNIST: [Gradient-Based Learning Applied to Document Recognition](http://
|
126 |
- For CLIP: [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020)
|
127 |
-
- **
|
|
|
|
|
128 |
|
129 |
|
130 |
### Direct Use
|
|
|
12 |
- fiftyone
|
13 |
- image
|
14 |
- image-classification
|
15 |
+
description: 'Curated MNIST dataset with train/val/test splits, including predictions of different models: CLIP, LeNet, and retrained LeNet.'
|
|
|
16 |
split_field: tags
|
17 |
dataset_name: curated-mnist
|
18 |
organization: andandandand
|
19 |
commit_message: Add curated MNIST dataset with train/val/test splits
|
20 |
+
dataset_summary: |
|
|
|
|
|
|
|
21 |

|
22 |
|
|
|
|
|
23 |
This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 70000 samples.
|
24 |
|
|
|
25 |
## Installation
|
26 |
|
27 |
+
If you haven't already, install FiftyOne:
|
|
|
|
|
28 |
|
29 |
```bash
|
|
|
30 |
pip install -U fiftyone
|
|
|
31 |
```
|
32 |
|
|
|
33 |
## Usage
|
34 |
|
|
|
35 |
```python
|
|
|
36 |
import fiftyone as fo
|
|
|
37 |
from fiftyone.utils.huggingface import load_from_hub
|
38 |
|
|
|
39 |
# Load the dataset
|
40 |
+
# Note: other available arguments include 'max_samples', etc
|
|
|
|
|
41 |
dataset = load_from_hub("andandandand/curated-mnist")
|
42 |
|
|
|
43 |
# Launch the App
|
|
|
44 |
session = fo.launch_app(dataset)
|
|
|
45 |
```
|
|
|
|
|
46 |
---
|
47 |
|
48 |
# Dataset Card for CuratedMNIST
|
|
|
99 |
|
100 |
- **Repository:** [andandandand/practical-computer-vision](https://github.com/andandandand/practical-computer-vision)
|
101 |
- **Paper:**
|
102 |
+
- For MNIST: [Gradient-Based Learning Applied to Document Recognition](http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf)
|
103 |
- For CLIP: [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020)
|
104 |
+
- **Source:**
|
105 |
+
- [Notebook on GitHub](https://github.com/andandandand/practical-computer-vision/blob/main/notebooks/Image_Classification_and_Dataset_Curation_with_FiftyOne_and_PyTorch_Getting_Started.ipynb)
|
106 |
+
- [](https://colab.research.google.com/github/andandandand/practical-computer-vision/blob/main/notebooks/Image_Classification_and_Dataset_Curation_with_FiftyOne_and_PyTorch_Getting_Started.ipynb)
|
107 |
|
108 |
|
109 |
### Direct Use
|