Datasets:
Commit
·
ef940c3
1
Parent(s):
9638448
chore(dataset): remove prompt
Browse files- mvl-sib200.py +1 -22
mvl-sib200.py
CHANGED
@@ -68,20 +68,6 @@ CATEGORIES: List[str] = [
|
|
68 |
"travel",
|
69 |
]
|
70 |
|
71 |
-
# Prompts for classification tasks
|
72 |
-
IMG2SENT_PROMPT: str = (
|
73 |
-
"Which option best matches the topic of the reference image(s)? "
|
74 |
-
'The available topics are "entertainment", "geograpy", "health", '
|
75 |
-
'"politics", "science and technology", "sports", and "travel". '
|
76 |
-
"Choose one from A, B, C, D and only output a single letter."
|
77 |
-
)
|
78 |
-
SENT2IMG_PROMPT: str = (
|
79 |
-
"Which option best matches the topic of the reference sentence(s)? "
|
80 |
-
'The available topics are "entertainment", "geograpy", "health", '
|
81 |
-
'"politics", "science and technology", "sports", and "travel". '
|
82 |
-
"Choose one from A, B, C, D and only output a single letter."
|
83 |
-
)
|
84 |
-
|
85 |
# URLs for downloading SIB .tsv data and images.
|
86 |
_SIB_URL: str = "https://huggingface.co/datasets/wuenlp/mvl-sib200/resolve/main/data/sib200/{lang}/{split}.tsv"
|
87 |
_IMG_URL: str = "https://huggingface.co/datasets/wuenlp/mvl-sib200/resolve/main/data/images/sib200/{category}_{no}.jpg"
|
@@ -277,7 +263,7 @@ def replicate_and_negatives(
|
|
277 |
|
278 |
for cat, group_df in grouped:
|
279 |
g_size = len(group_df)
|
280 |
-
|
281 |
# The preallocated arrays for negative and positive columns will be filled for each row individually, i.e., sampling of negative categories and samples will be done per row
|
282 |
# Prepare arrays for final negative columns
|
283 |
neg_id_cols = [np.empty(g_size, dtype=object) for _ in range(num_negatives)]
|
@@ -472,7 +458,6 @@ class MVLSIB(datasets.GeneratorBasedBuilder):
|
|
472 |
The dataset is structured such that each row includes:
|
473 |
- A set of reference items (images or sentences, depending on the task).
|
474 |
- A set of 4 possible answers (1 positive, 3 negative).
|
475 |
-
- A prompt instructing the user to pick the correct match.
|
476 |
- A label indicating which of the 4 answers is correct.
|
477 |
"""
|
478 |
|
@@ -494,7 +479,6 @@ class MVLSIB(datasets.GeneratorBasedBuilder):
|
|
494 |
- label (int specifying which of the sentences is correct)
|
495 |
- id (an integer ID)
|
496 |
- index_id (the original row ID from the SIB .tsv)
|
497 |
-
- prompt (str, the classification prompt)
|
498 |
|
499 |
Each example row in 'sent2img' includes:
|
500 |
- sentences (list of str, the positive reference sentences)
|
@@ -503,7 +487,6 @@ class MVLSIB(datasets.GeneratorBasedBuilder):
|
|
503 |
- label (int specifying which of the images is correct)
|
504 |
- id (an integer ID)
|
505 |
- index_id (the original row ID from the SIB .tsv)
|
506 |
-
- prompt (str, the classification prompt)
|
507 |
|
508 |
Returns
|
509 |
-------
|
@@ -518,7 +501,6 @@ class MVLSIB(datasets.GeneratorBasedBuilder):
|
|
518 |
"images": Sequence(Value("string")),
|
519 |
"sentences": Sequence(Value("string")),
|
520 |
"categories": Sequence(Value("string")),
|
521 |
-
"prompt": Value("string"),
|
522 |
"label": Value("int8"),
|
523 |
"id": Value("int64"),
|
524 |
"index_id": Value("int64"),
|
@@ -532,7 +514,6 @@ class MVLSIB(datasets.GeneratorBasedBuilder):
|
|
532 |
"label": Value("int8"),
|
533 |
"id": Value("int64"),
|
534 |
"index_id": Value("int64"),
|
535 |
-
"prompt": Value("string"),
|
536 |
}
|
537 |
)
|
538 |
|
@@ -673,7 +654,6 @@ class MVLSIB(datasets.GeneratorBasedBuilder):
|
|
673 |
i,
|
674 |
{
|
675 |
"id": i,
|
676 |
-
"prompt": IMG2SENT_PROMPT,
|
677 |
"index_id": row["index_id"],
|
678 |
"images": row_images,
|
679 |
"categories": categories_shuffled,
|
@@ -717,7 +697,6 @@ class MVLSIB(datasets.GeneratorBasedBuilder):
|
|
717 |
i,
|
718 |
{
|
719 |
"id": i,
|
720 |
-
"prompt": SENT2IMG_PROMPT,
|
721 |
"index_id": row["index_id"],
|
722 |
"images": row_images,
|
723 |
"categories": categories_shuffled,
|
|
|
68 |
"travel",
|
69 |
]
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
# URLs for downloading SIB .tsv data and images.
|
72 |
_SIB_URL: str = "https://huggingface.co/datasets/wuenlp/mvl-sib200/resolve/main/data/sib200/{lang}/{split}.tsv"
|
73 |
_IMG_URL: str = "https://huggingface.co/datasets/wuenlp/mvl-sib200/resolve/main/data/images/sib200/{category}_{no}.jpg"
|
|
|
263 |
|
264 |
for cat, group_df in grouped:
|
265 |
g_size = len(group_df)
|
266 |
+
|
267 |
# The preallocated arrays for negative and positive columns will be filled for each row individually, i.e., sampling of negative categories and samples will be done per row
|
268 |
# Prepare arrays for final negative columns
|
269 |
neg_id_cols = [np.empty(g_size, dtype=object) for _ in range(num_negatives)]
|
|
|
458 |
The dataset is structured such that each row includes:
|
459 |
- A set of reference items (images or sentences, depending on the task).
|
460 |
- A set of 4 possible answers (1 positive, 3 negative).
|
|
|
461 |
- A label indicating which of the 4 answers is correct.
|
462 |
"""
|
463 |
|
|
|
479 |
- label (int specifying which of the sentences is correct)
|
480 |
- id (an integer ID)
|
481 |
- index_id (the original row ID from the SIB .tsv)
|
|
|
482 |
|
483 |
Each example row in 'sent2img' includes:
|
484 |
- sentences (list of str, the positive reference sentences)
|
|
|
487 |
- label (int specifying which of the images is correct)
|
488 |
- id (an integer ID)
|
489 |
- index_id (the original row ID from the SIB .tsv)
|
|
|
490 |
|
491 |
Returns
|
492 |
-------
|
|
|
501 |
"images": Sequence(Value("string")),
|
502 |
"sentences": Sequence(Value("string")),
|
503 |
"categories": Sequence(Value("string")),
|
|
|
504 |
"label": Value("int8"),
|
505 |
"id": Value("int64"),
|
506 |
"index_id": Value("int64"),
|
|
|
514 |
"label": Value("int8"),
|
515 |
"id": Value("int64"),
|
516 |
"index_id": Value("int64"),
|
|
|
517 |
}
|
518 |
)
|
519 |
|
|
|
654 |
i,
|
655 |
{
|
656 |
"id": i,
|
|
|
657 |
"index_id": row["index_id"],
|
658 |
"images": row_images,
|
659 |
"categories": categories_shuffled,
|
|
|
697 |
i,
|
698 |
{
|
699 |
"id": i,
|
|
|
700 |
"index_id": row["index_id"],
|
701 |
"images": row_images,
|
702 |
"categories": categories_shuffled,
|