YangziResearch commited on
Commit
6558254
·
verified ·
1 Parent(s): a6e6fde

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -145
README.md CHANGED
@@ -1,9 +1,9 @@
1
  ---
2
- license: gpl-3.0
3
  task_categories:
4
  - text-generation
5
  language:
6
- - code
7
  tags:
8
  - CodeGen
9
  - LLVM
@@ -11,171 +11,108 @@ tags:
11
  pretty_name: IR-Level Compiler Optimization Dataset
12
  size_categories:
13
  - 100K<n<1M
14
-
15
  ---
16
 
17
- # Dataset Card for ComOpti
18
-
19
- <!-- Provide a quick summary of the dataset. -->
20
 
21
- ComOpti is the first publicly available dataset specifically designed for IR-level compiler optimization. It captures diverse and representative optimization behaviors, focusing on real-world programs with varied optimization needs. The dataset includes sources from well-established compiler benchmark suites such as PolyBench, Embench, and TSVC, as well as 48XX GitHub repositories spanning eight high-performance computing (HPC) domains. These HPC applications are selected for their intensive computational and memory demands, making them ideal for evaluating compiler optimizations. In total, ComOpti contains 400,000 LLVM IR files and xxx distinct optimization behaviors, with each program exhibiting an average of xxx effective optimization steps. This diversity allows models to learn where and when optimizations take effect, supporting advanced research in automated IR-level optimization.
22
 
 
23
 
24
  ## Dataset Details
25
 
26
- ### Dataset Description
27
-
28
- <!-- Provide a longer summary of what this dataset is. -->
29
-
30
- - **Curated by:**
31
- - **Funded by [optional]:**
32
- - **Shared by [optional]:**
33
- - **Languages:** C, C++
34
- - **License:** GPL-3.0
35
-
36
- ### Dataset Sources [optional]
37
-
38
- <!-- Provide the basic links for the dataset. -->
39
-
40
- - **Repository:** https://huggingface.co/datasets/YangziResearch/ComOpti
41
- - **Paper [optional]:**
42
- - **Demo [optional]:**
43
-
44
- ## Uses
45
 
46
- <!-- Address questions around how the dataset is intended to be used. -->
 
 
47
 
48
- ### Direct Use
49
 
50
- <!-- This section describes suitable use cases for the dataset. -->
 
51
 
52
- ComOpti is designed for the following tasks:
53
 
54
- 1. IR Understanding: Training models to extract structural and semantic information from raw IR.
55
- 2. Optimization Analysis: Analyzing optimization behaviors in IR, assessing the effectiveness of different optimization strategies.
56
- 3. Optimized Code Generation: Generating new IR variants based on optimization strategies.
57
 
 
58
 
59
- ### Out-of-Scope Use
 
 
60
 
61
- <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
62
 
63
- ComOpti is not suitable for the following uses:
64
 
65
- 1. Non-compiler-related tasks: Since the dataset focuses on compiler optimizations, it may not perform well for tasks outside of this domain.
66
- 2. Unauthorized commercial use: Using the dataset for unauthorized commercial activities may violate the licenses of the original code.
67
 
68
  ## Dataset Structure
69
 
70
- <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
71
-
72
- Each sample includes the following files:
73
-
74
- - **base.ll**: The unoptimized LLVM IR, generated by `clang/clang++ -Xclang -disable-llvm-passes -O3`.
75
- - **preprocessed.ll**: We offer a simple preprocessed version of the base IR.
76
- - **O3.ll**: The O3 version generated by `opt -passes='default<O3>'`
77
- - **Os.ll**: The Os version generated by `opt -passes='default<Os>'`
78
- - **effect_passes**: A list of effective optimization passes.
79
- - **Repo**: The repo where the High Level Language sources are collected.
80
- - **License**: License info affliated with the repo.
81
-
82
- ## Dataset Creation
83
-
84
- ### Curation Rationale
85
-
86
- <!-- Motivation for the creation of this dataset. -->
87
-
88
- The creation of ComOpti aims to fill the gap in IR-level compiler optimization research, providing a high-quality dataset for training and evaluation to advance automated optimization techniques.
89
-
90
- ### Source Data
91
-
92
- <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
93
-
94
- #### Data Collection and Processing
95
-
96
- The dataset is sourced from:
97
-
98
- - XXXX github
99
- - XXXX gitlab
100
-
101
- with 8 categories:
102
-
103
- 1. XXXXX
104
-
105
-
106
-
107
- We use the following preprocessing utils and ensure they are grammarly equivelent to the original IR.
108
-
109
- - Local Variable Renaming
110
- - XXXX
111
- -
112
-
113
- #### Who are the source data producers?
114
-
115
- <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
116
-
117
- The data was collected and processed by [Your Name or Team].
118
 
119
- ### Annotations [optional]
 
 
 
 
 
 
 
 
120
 
121
- <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
122
 
123
- #### Annotation process
124
 
125
- <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
126
-
127
- [More Information Needed]
128
-
129
- #### Who are the annotators?
130
-
131
- <!-- This section describes the people or systems who created the annotations. -->
132
-
133
- [More Information Needed]
134
-
135
- #### Personal and Sensitive Information
136
-
137
- <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
138
-
139
- [More Information Needed]
140
-
141
- ## Bias, Risks, and Limitations
142
-
143
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
144
-
145
- [More Information Needed]
146
-
147
- ### Recommendations
148
-
149
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
150
-
151
- Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
152
-
153
- ## Citation [optional]
154
-
155
- <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
156
-
157
- **BibTeX:**
158
-
159
- [More Information Needed]
160
-
161
- **APA:**
162
-
163
- [More Information Needed]
164
-
165
- ## Glossary [optional]
166
-
167
- <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
168
-
169
- [More Information Needed]
170
-
171
- ## More Information [optional]
172
-
173
- [More Information Needed]
174
-
175
- ## Dataset Card Authors [optional]
176
-
177
- [More Information Needed]
178
-
179
- ## Dataset Card Contact
180
 
181
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: cc-by-4.0
3
  task_categories:
4
  - text-generation
5
  language:
6
+ - code
7
  tags:
8
  - CodeGen
9
  - LLVM
 
11
  pretty_name: IR-Level Compiler Optimization Dataset
12
  size_categories:
13
  - 100K<n<1M
 
14
  ---
15
 
16
+ # Dataset Card for IROpti
 
 
17
 
18
+ **IROpti** is a publicly available dataset designed to advance the use of large language models (LLMs) in compiler optimization. It leverages LLVM—one of the most widely adopted modern compilers—and focuses on its intermediate representation (IR) as the foundation of the dataset. IROpti contains 170,000 IR samples curated from 1,704 GitHub repositories across diverse domains. The dataset provides a comprehensive resource for training and evaluating models in the field of IR-level compiler optimizations.
19
 
20
+ ------
21
 
22
  ## Dataset Details
23
 
24
+ ### Description
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
+ - **Languages**: LLVM Intermediate Representation (LLVM IR)
27
+ - **Size**: ~170,000 IR samples
28
+ - **Optimization Behaviors**: >4.3 million annotations
29
 
30
+ ### Source
31
 
32
+ - **Repositories**: 1,704 open-source GitHub repositories
33
+ - **Link**: [IROpti on Hugging Face](https://huggingface.co/datasets/YangziResearch/IROpti)
34
 
35
+ ------
36
 
37
+ ## Intended Uses
 
 
38
 
39
+ IROpti is suitable for the following use cases:
40
 
41
+ 1. **IR Understanding**: Train models to extract structural and semantic information from LLVM IR code.
42
+ 2. **Optimization Behavior Analysis**: Evaluate model ability to capture and apply real-world compiler optimizations.
43
+ 3. **Optimized Code Generation**: Use LLMs to generate optimized IR from unoptimized input.
44
 
45
+ ### Out-of-Scope Uses
46
 
47
+ - **Non-Compiler Tasks**: The dataset is specifically tailored to IR-level optimization tasks and may not generalize well to unrelated domains.
48
 
49
+ ------
 
50
 
51
  ## Dataset Structure
52
 
53
+ Each record in IROpti includes:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
 
55
+ - `original_ir`: Unoptimized LLVM IR (via `clang/clang++ -Xclang -disable-llvm-passes`)
56
+ - `preprocessed_ir`: Cleaned version of the original IR
57
+ - `o3_ir`: Optimized IR generated via `opt -passes='default<O3>'`
58
+ - `o3_active_passes`: Effective passes during O3 compiling
59
+ - `structural_hash`: Unique structurehash of the IR, via `opt -passes='print<structural-hash><detailed>`
60
+ - `repo_name`: Source GitHub repository
61
+ - `repo_file_path`: File path within the repository
62
+ - `function_name`: IR function name
63
+ - `repo_license`: Associated license
64
 
65
+ > Each `.parquet` file contains ~20,000 examples.
66
 
67
+ ------
68
 
69
+ ## Dataset Creation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
 
71
+ ### Collection and Preprocessing
72
+
73
+ - **Selection**: Repositories were manually filtered for compilation relevance and diversity across domains.
74
+ - **Preprocessing**:
75
+ - Local variable renaming
76
+ - Basic block renaming
77
+ - Struct name normalization
78
+ - Whitespace and comment removal
79
+ - Insertion of missing basic block headers where needed
80
+
81
+ All transformations preserve the semantic and structural fidelity of the IR.
82
+
83
+ - **Domains**:
84
+ - High-Performance Computing (HPC)
85
+ - Machine Learning
86
+ - Multimedia
87
+ - Embedded Systems
88
+ - System Software
89
+ - Security
90
+ - Reusable Libraries
91
+ - Algorithms
92
+
93
+ | Domain | Description | #Repos | #LLVM IR | #Opt. Behaviors | Avg. Eff. Opt. Steps |
94
+ | -------------------------------- | ------------------------------------------------------------ | ------ | -------- | --------------- | -------------------- |
95
+ | High-Performance Computing (HPC) | Loop-intensive, memory-bound workloads; key targets for vectorization, parallelism, and memory locality optimizations. | 275 | 17,145 | 399,110 | 23.28 |
96
+ | Machine Learning | Compute-bound code; used for parallel execution. | 95 | 9,366 | 249,467 | 26.64 |
97
+ | Multimedia | SIMD-intensive, throughput-sensitive workloads; targets loop optimizations. | 174 | 15,019 | 338,699 | 22.55 |
98
+ | Embedded Systems | Resource-constrained (size, energy, real-time); compilers optimize for minimal footprint and energy efficiency. | 108 | 5,942 | 129,449 | 21.79 |
99
+ | System Software | Includes OS kernels, runtime systems, allocators; requires low-level control, safety, and instruction-level optimization. | 93 | 6,581 | 136,688 | 20.77 |
100
+ | Security | Demands high performance and strict constant-time behavior; requires careful register use, vectorization, and avoidance of side-channel vulnerabilities during optimization. | 94 | 9,252 | 184,329 | 19.92 |
101
+ | Reusable Libraries | Common code reused across domains; compilers apply inlining, and target-specific tuning. | 106 | 7,664 | 157,162 | 20.51 |
102
+ | Algorithms | Classical algorithms (e.g., sorting); compiler optimizations target computation and memory. | 759 | 99,595 | 2,754,505 | 27.66 |
103
+ | **Total** | - | 1,704 | 170,564 | 4,349,409 | **Avg: 22.89** |
104
+
105
+ ## Citation
106
+
107
+ **BibTeX**
108
+
109
+ ```
110
+ @misc{iropti2025,
111
+ title={IROpti: Enhancing LLMs to Understand and Perform IR-level Optimizations in Compilers},
112
+ author={Zi Yang and Lei Qiu and Fang Lyu and Ming Zhong and Zhilei Chai and Haojie Zhou and Huimin Cui and Xiaobing Feng},
113
+ year={2025},
114
+ url={https://huggingface.co/datasets/YangziResearch/IROpti}
115
+ }
116
+ ```
117
+
118
+ > We also provide an open-source toolchain for building similar datasets. If you're interested in generating your own optimization corpus, feel free to use our tools.