antitheft159 commited on
Commit
c363c04
·
verified ·
1 Parent(s): a1277e6

Upload 1134_252_159.py

Browse files
Files changed (1) hide show
  1. 1134_252_159.py +62 -0
1134_252_159.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """1134.252.159
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1Y4HZHRme1jvjdQROi8EQ1S0PdzDBeh9K
8
+ """
9
+
10
+ !pip install torch torchvision numpy opencv-python
11
+
12
+ from torchvision import datasets, transforms
13
+
14
+ transform = transforms.Compose([
15
+ transforms.Resize((128, 128)),
16
+ transforms.ToTensor(),
17
+ transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
18
+ ])
19
+
20
+ # Insert your 'path_to_train_data'
21
+ train_dataset = datasets.ImageFolder(root='path_to_train_data', transform=transform)
22
+ train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True)
23
+
24
+ import torch.nn as nn
25
+ import torchvision.models as models
26
+
27
+ model = models.resnet18(pretrained=True)
28
+ num_features = model.fc.in_features
29
+ model.fc = nn.Linear(num_features, num_classes) # num_classes should be the number of individuals in your dataset
30
+
31
+ import torch.optim as optim
32
+
33
+ criterion = nn.CrossEntropyLoss()
34
+ optimizer = optim.Adam(model.parameters(), lr=0.001)
35
+
36
+ for epoch in range(num_epochs):
37
+ for inputs, labels in train_loader:
38
+ optimizer.zero_grad()
39
+ outputs = model(inputs)
40
+ loss = criterion(outputs, labels)
41
+ loss.backward()
42
+ optimizer.step()
43
+
44
+ model.eval()
45
+ correct = 0
46
+ total = 0
47
+ with torch.no_grad():
48
+ for inputs, labels in test_loader:
49
+ outputs = model(inputs)
50
+ _, predicted = torch.max(outputs.data, 1)
51
+ total += labels.size(0)
52
+ correct += (predicted == labels).sum().item()
53
+
54
+ accuracy = 100 * correct / total
55
+ print(f'Accuracy: {accuracy}%')
56
+
57
+ model.eval()
58
+ img = Image.open('path_to_image')
59
+ img = transform(img).unsqueeze(0) # Add batch dimension
60
+ output = model(img)
61
+ _, predicted = torch.max(output, 1)
62
+ print(f'Predicted Class: {predicted.item()}')