antitheft159 commited on
Commit
4705bad
·
verified ·
1 Parent(s): 34db93a

Upload 1708_159_252.py

Browse files
Files changed (1) hide show
  1. 1708_159_252.py +87 -0
1708_159_252.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """1708.159.252
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/11rYVHhKlJ8F_hnmnVtTOUNsLA8pk8Pn6
8
+ """
9
+
10
+ !pip install mplfinance
11
+
12
+ import pandas as pd
13
+ import matplotlib.pyplot as plt
14
+ import seaborn as sns
15
+ from mplfinance.original_flavor import candlestick_ohlc
16
+ import matplotlib.dates as mdates
17
+
18
+ data = pd.read_csv('/content/berkshire_hathaway_data.csv')
19
+
20
+ data.isnull().sum()
21
+ data = data.dropna()
22
+ data.dtypes
23
+
24
+ data['Date'] = pd.to_datetime(data['Date'])
25
+
26
+ plt.figure(figsize=(10, 6))
27
+ plt.plot(data['Date'], data['Close'], label='Close Price')
28
+ plt.xlabel('Date')
29
+ plt.ylabel('Close Price')
30
+ plt.title('Close Price Over Time')
31
+ plt.legend()
32
+ plt.grid(True)
33
+ plt.show()
34
+
35
+ ohlc = data[['Date', 'Open', 'High', 'Low', 'Close']]
36
+ ohlc['Date'] = ohlc['Date'].map(mdates.date2num)
37
+ fig, ax = plt.subplots(figsize=(10, 6))
38
+ candlestick_ohlc(ax, ohlc.values, width=0.6, colorup='g', colordown='r')
39
+ ax.xaxis_date()
40
+ ax.set_xlabel('Date')
41
+ ax.set_ylabel('Price')
42
+ ax.set_title('Candlestick Chart')
43
+ plt.grid(True)
44
+ plt.show()
45
+
46
+ plt.figure(figsize=(10, 6))
47
+ plt.bar(data['Date'], data['Volume'], label='Volume')
48
+ plt.xlabel('Date')
49
+ plt.ylabel('Volume')
50
+ plt.title('Volume Over Time')
51
+ plt.legend()
52
+ plt.grid(True)
53
+ plt.show()
54
+
55
+ data['MA50'] = data['Close'].rolling(window=50).mean()
56
+ plt.figure(figsize=(10, 6))
57
+ plt.plot(data['Date'], data['Close'], label='Close Price')
58
+ plt.plot(data['Date'], data['MA50'], label='50-Day MA')
59
+ plt.xlabel('Date')
60
+ plt.ylabel('Price')
61
+ plt.title('Close Price and 50-Day Moving Average')
62
+ plt.legend()
63
+ plt.grid(True)
64
+ plt.show()
65
+
66
+ plt.figure(figsize=(10, 6))
67
+ plt.scatter(data['High'], data['Low'], alpha=0.5, label='High vs. Low')
68
+ plt.xlabel('High Price')
69
+ plt.ylabel('Low Price')
70
+ plt.title('High vs. Low Price')
71
+ plt.legend()
72
+ plt.grid(True)
73
+ plt.show()
74
+
75
+ plt.figure(figsize=(10, 6))
76
+ plt.scatter(data['Open'], data['Close'], alpha=0.5, label='Open vs. Close')
77
+ plt.xlabel('Open Price')
78
+ plt.ylabel('Close Price')
79
+ plt.title('Open vs. Close Price')
80
+ plt.legend()
81
+ plt.grid(True)
82
+ plt.show()
83
+
84
+ plt.figure(figsize=(10, 6))
85
+ sns.heatmap(data.corr(), annot=True, cmap='coolwarm', vmin=-1, vmax=1)
86
+ plt.title('Correlation Heatmap')
87
+ plt.show()