!pip install mplfinance import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from mplfinance.original_flavor import candlestick_ohlc import matplotlib.dates as mdates data = pd.read_csv('/content/berkshire_hathaway_data.csv') data.isnull().sum() data = data.dropna() data.dtypes data['Date'] = pd.to_datetime(data['Date']) plt.figure(figsize=(10, 6)) plt.plot(data['Date'], data['Close'], label='Close Price') plt.xlabel('Date') plt.ylabel('Close Price') plt.title('Close Price Over Time') plt.legend() plt.grid(True) plt.show() ohlc = data[['Date', 'Open', 'High', 'Low', 'Close']] ohlc['Date'] = ohlc['Date'].map(mdates.date2num) fig, ax = plt.subplots(figsize=(10, 6)) candlestick_ohlc(ax, ohlc.values, width=0.6, colorup='g', colordown='r') ax.xaxis_date() ax.set_xlabel('Date') ax.set_ylabel('Price') ax.set_title('Candlestick Chart') plt.grid(True) plt.show() plt.figure(figsize=(10, 6)) plt.bar(data['Date'], data['Volume'], label='Volume') plt.xlabel('Date') plt.ylabel('Volume') plt.title('Volume Over Time') plt.legend() plt.grid(True) plt.show() data['MA50'] = data['Close'].rolling(window=50).mean() plt.figure(figsize=(10, 6)) plt.plot(data['Date'], data['Close'], label='Close Price') plt.plot(data['Date'], data['MA50'], label='50-Day MA') plt.xlabel('Date') plt.ylabel('Price') plt.title('Close Price and 50-Day Moving Average') plt.legend() plt.grid(True) plt.show() plt.figure(figsize=(10, 6)) plt.scatter(data['High'], data['Low'], alpha=0.5, label='High vs. Low') plt.xlabel('High Price') plt.ylabel('Low Price') plt.title('High vs. Low Price') plt.legend() plt.grid(True) plt.show() plt.figure(figsize=(10, 6)) plt.scatter(data['Open'], data['Close'], alpha=0.5, label='Open vs. Close') plt.xlabel('Open Price') plt.ylabel('Close Price') plt.title('Open vs. Close Price') plt.legend() plt.grid(True) plt.show() plt.figure(figsize=(10, 6)) sns.heatmap(data.corr(), annot=True, cmap='coolwarm', vmin=-1, vmax=1) plt.title('Correlation Heatmap') plt.show()