antitheft159 commited on
Commit
b437a2b
·
verified ·
1 Parent(s): 630617e

Upload 2 files

Browse files
Files changed (2) hide show
  1. 1812_159_252.py +101 -0
  2. Raw Data.csv +0 -0
1812_159_252.py ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """1812.159.252
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/18Q9tMQvVHXk2Rs_3EoKpdRhFuOyv4iDk
8
+ """
9
+
10
+ import numpy as np
11
+ import pandas as pd
12
+ import matplotlib.pyplot as plt
13
+ import seaborn as sns
14
+ import warnings
15
+ warnings.filterwarnings('ignore')
16
+
17
+ df = pd.read_csv('/content/Raw Data.csv')
18
+
19
+ df.info()
20
+
21
+ cols_index = list(range(7, 14)) + list(range(16, 26)) + list(range(28,37))
22
+
23
+ df.drop(columns=df.columns[cols_index], inplace=True)
24
+
25
+ df.info()
26
+
27
+ df.columns = df.columns.str.replace(r'^\d+\.\s*','', regex=True)
28
+ df.rename(columns = {'Did you receiver a waiver or scholarship at your university?': 'Waiver/Scholarship'}, inplace=True)
29
+
30
+ df.info()
31
+
32
+ value_cols = ['Anxiety Value', 'Stress Value', 'Depression Value']
33
+
34
+ for col in value_cols:
35
+ plt.figure(figsize=(10,6))
36
+ plt.title(f'{col}, Distribution')
37
+ sns.histplot(data=df, x=col, bins=10)
38
+ plt.show()
39
+
40
+ label_cols = ['Anxiety Label', 'Stress Label', 'Depression Label']
41
+
42
+ for col in label_cols:
43
+ data = df[col].value_counts().reset_index()
44
+ plt.figure(figsize=(10,6))
45
+ plt.title(f'{col} Distribution')
46
+ sns.barplot(data=data, x=col, y='count', palette='viridis', width=.4)
47
+ plt.xticks(rotation=45)
48
+ plt.xlabel('')
49
+ plt.ylabel('')
50
+ plt.show()
51
+
52
+ features = df.drop(columns=value_cols+label_cols).columns
53
+
54
+ for label in label_cols:
55
+ label_name = label.split(' ')[0]
56
+ print(f'\n{label_name} Analysis\n')
57
+ for col in features:
58
+ pivot_table = pd.crosstab(df[col], df[label])
59
+ pivot_tabel = pivot_table.div(pivot_table.sum(axis=1), axis=0) * 100
60
+ plt.figure(figsize=(10,8))
61
+ sns.heatmap(pivot_table, annot=True, fmt='.2f', cmap='YlGnBu')
62
+ plt.title(f'{label_name} vs {col}')
63
+ plt.xlabel('')
64
+ plt.ylabel('')
65
+ plt.yticks(rotation=0)
66
+ plt.show()
67
+
68
+ from sklearn.preprocessing import OrdinalEncoder
69
+
70
+ df.drop(columns=value_cols, inplace=True)
71
+
72
+ ordinal_encoder = OrdinalEncoder()
73
+ df[df.columns] = ordinal_encoder.fit_transform(df[df.columns])
74
+
75
+ df.head()
76
+
77
+ for label in label_cols:
78
+ cols = list(features).copy()
79
+ cols.append(label)
80
+ data = df[cols].corr()
81
+ plt.figure(figsize=(10,8))
82
+ sns.heatmap(data, annot=True, fmt='.3f', cmap='coolwarm')
83
+ plt.title(f'{label} Correlation')
84
+ plt.show()
85
+
86
+ from sklearn.model_selection import train_test_split
87
+ from sklearn.ensemble import RandomForestClassifier
88
+ from sklearn.metrics import accuracy_score
89
+
90
+ print('Model Accuracy')
91
+ for label in label_cols:
92
+ X = df.drop(columns=label_cols)
93
+ y = df[label]
94
+
95
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = .2, random_state = 0)
96
+
97
+ model = RandomForestClassifier(random_state=0, n_estimators=30, max_depth=8)
98
+ model.fit(X_train, y_train)
99
+ preds = model.predict(X_test)
100
+
101
+ print(f'{label}: {accuracy_score(y_test, preds) * 100:.2f}%')
Raw Data.csv ADDED
The diff for this file is too large to render. See raw diff