Upload 2247_159_252 (1).py
Browse files- 2247_159_252 (1).py +100 -0
2247_159_252 (1).py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""2247.159.252
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1zzXHR2L7JfiEtViUgooXP5iYBIeu2gkf
|
8 |
+
"""
|
9 |
+
|
10 |
+
import warnings
|
11 |
+
import numpy as np
|
12 |
+
import pandas as pd
|
13 |
+
import plotly.express as px
|
14 |
+
from sklearn.linear_model import LinearRegression
|
15 |
+
from sklearn.model_selection import train_test_split
|
16 |
+
from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error
|
17 |
+
warnings.filterwarnings('ignore')
|
18 |
+
|
19 |
+
df = pd.read_csv('/content/Wprld population growth rate by cities 2024.csv')
|
20 |
+
|
21 |
+
df.info()
|
22 |
+
|
23 |
+
df.describe().T
|
24 |
+
|
25 |
+
df.head()
|
26 |
+
|
27 |
+
df.isnull().sum().sort_values(ascending=False)
|
28 |
+
|
29 |
+
df['Continent'].unique()
|
30 |
+
|
31 |
+
df[df['Continent'].isnull()]
|
32 |
+
|
33 |
+
df.duplicated().any()
|
34 |
+
|
35 |
+
df.loc[df['Continent'] == 'Oceana', 'Continent'] = 'Oceania'
|
36 |
+
|
37 |
+
con = ['North America', 'Africa', 'Europe', 'Africa', 'Europe', 'Africa', 'Europe', 'Africa', 'Europe', 'Europe', 'Europe']
|
38 |
+
ind = df[df['Continent'].isnull()].index
|
39 |
+
|
40 |
+
df['Count'] = 1
|
41 |
+
|
42 |
+
fig = px.pie(df, names='Continent', values='Count')
|
43 |
+
fig.update_layout(legend_title='Continent', title={'text': 'Distribution of Continents', 'y':0.95, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'})
|
44 |
+
fig.show()
|
45 |
+
|
46 |
+
for c in df['Continent'].unique():
|
47 |
+
fig = px.histogram(df[df['Continent'] == c], x='Count', y='Country', color='Country', color_discrete_sequence=px.colors.qualitative.Dark24).update_yaxes(categoryorder='total ascending')
|
48 |
+
fig.update_layout(title={'text': f'Distribution of Country in {c}', 'y':0.95, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}, xaxis_title='Sum of Count')
|
49 |
+
fig.show()
|
50 |
+
|
51 |
+
for n in ['Population (2023)', 'Population (2024)', 'Growth Rate']:
|
52 |
+
fig = px.histogram(df, x=n, y="Count",
|
53 |
+
marginal="box",
|
54 |
+
hover_data=df.columns)
|
55 |
+
fig.update_layout(title={'text': f'Distribution of {n}', 'y':0.95, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}, yaxis_title='Sum of Count')
|
56 |
+
fig.show()
|
57 |
+
|
58 |
+
country = df.groupby('Country', as_index=False)[['Growth Rate']].mean()
|
59 |
+
city = df.groupby('City', as_index=False).agg({'Population (2024)': 'sum', 'Growth Rate': 'mean'})
|
60 |
+
|
61 |
+
fig = px.box(df, x='Continent', y='Growth Rate', color='Continent', color_discrete_sequence=px.colors.qualitative.Dark24)
|
62 |
+
fig.update_layout(title={'text': 'Growth Rate by Continent','y':0.95,'x':0.5,'xanchor': 'center','yanchor': 'top'})
|
63 |
+
fig.show()
|
64 |
+
|
65 |
+
fig = px.bar(country.sort_values('Growth Rate', ascending=False)[:10], x='Country', y='Growth Rate', color='Country', color_discrete_sequence=px.colors.qualitative.Dark24)
|
66 |
+
fig.update_layout(title={'text': 'Top 10 Countries with Highest Average Growth Rate', 'y':0.95, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'})
|
67 |
+
fig.show()
|
68 |
+
|
69 |
+
fig = px.bar(city.sort_values('Growth Rate', ascending=False)[:10], x='City', y='Growth Rate', color='City', color_discrete_sequence=px.colors.qualitative.Dark24)
|
70 |
+
fig.update_layout(title={'text': 'Top 10 Cities with Highest Averate Growth Rate', 'y':0.95, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'})
|
71 |
+
fig.show()
|
72 |
+
|
73 |
+
fig = px.bar(country.sort_values('Growth Rate')[:10], x='Country', y='Growth Rate', color='Country', color_discrete_sequence=px.colors.qualitative.Dark24)
|
74 |
+
fig.update_layout(title={'text': 'Top 10 Countries with Lowest Growth Rate', 'y':0.95, 'x':0.5, 'xanchor': 'center','yanchor': 'top'})
|
75 |
+
fig.show()
|
76 |
+
|
77 |
+
fig = px.bar(city.sort_values('Population (2024)', ascending=False)[:5], x='City', y='Population (2024)', color='City', color_discrete_sequence=px.colors.qualitative.Dark24)
|
78 |
+
fig.update_layout(title={'text': 'Top 5 Cities with Highest Population (2024)', 'y':0.95, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'})
|
79 |
+
fig.show()
|
80 |
+
|
81 |
+
fig = px.bar(city.sort_values('Population (2024)') [:5], x='City', y='Population (2024)', color='City', color_discrete_sequence=px.colors.qualitative.Dark24)
|
82 |
+
fig.update_layout(title={'text': 'Top 5 Cities with Lowest Population (2024)', 'y':0.95, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'})
|
83 |
+
fig.show()
|
84 |
+
|
85 |
+
df_num = df.drop(columns=['Count']).select_dtypes(include=np.number)
|
86 |
+
fig = px.imshow(df_num.corr())
|
87 |
+
fig.update_layout(title={'text': 'Correlation Between Numerical Attributes', 'y':0.95, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'})
|
88 |
+
fig.show()
|
89 |
+
|
90 |
+
X = df[['Population (2023)', 'Growth Rate']]
|
91 |
+
y = df['Population (2024)']
|
92 |
+
|
93 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
94 |
+
|
95 |
+
model = LinearRegression()
|
96 |
+
model.fit(X_train, y_train)
|
97 |
+
y_pred = model.predict(X_test)
|
98 |
+
print(f'R2 Score: {round(r2_score(y_test, y_pred)*100,2)}%')
|
99 |
+
print(f'Mean Absolute Error: {round(mean_absolute_error(y_test, y_pred), 2)}')
|
100 |
+
print(f'Root Mean Squared Error: {round(np.sqrt(mean_squared_error(y_test, y_pred)), 2)}\n')
|